51. First Observation ofτ→3πηντandτ→f1πντDecays
- Author
-
J. Masui, L. P. Perera, J. S. Miller, Y. S. Gao, S. Menary, S. J. Patton, D. W. Bliss, H. Yamamoto, Sheldon Stone, Paul Avery, Yang Li, T. S. Hill, R. Ehrlich, S. Schrenk, Richard L. Greene, E. H. Thorndike, D. L. Kreinick, C. Bebek, Yanwen Liu, J. G. Smith, R. Wang, D. Cinabro, G. Masek, Juliet Ritchie Patterson, D. L. Hartill, D. Z. Besson, D. He, S. D. Johnson, M. Yurko, D. Coppage, E. I. Shibata, G. Bonvicini, Sacha E Kopp, D. S. Crowcroft, Alain Bellerive, Yurii Maravin, John E. Bartelt, D. J. Lange, Y. J. Kwon, Alexander Undrus, S. B. Anderson, R. M. Hans, J. P. Alexander, K. Lingel, T. E. Browder, R. Ammar, W. T. Ford, R. D. Kass, R. Balest, M. S. Alam, R. Wanke, B. Gittelman, Marina Artuso, I. C. Lai, S. Chan, J. D. Richman, June Hyuk Lee, X. J. Zhou, H. Marsiske, A. H. Mahmood, M. Ogg, C. P. Ward, F. Li, A. D. Foland, F. R. Wappler, V. Savinov, C. P. Jessop, Horst Severini, J. Staeck, W. R. Ross, S. Glenn, R. A. Briere, M. A. Marsh, J. Zheng, K. K. Gan, T. Skwarnicki, D. H. Miller, L. K. Gibbons, A. Anastassov, S. B. Athar, P. Pomianowski, G. E. Gladding, S. Kotov, B. C. Barish, Z. Ling, J. Urheim, B. Valant-Spaight, R. Davis, I. P. J. Shipsey, Erik A. Johnson, S. Schuh, Ilya Kravchenko, P. C. Kim, M. Goldberg, G. C. Moneti, Vivek Sharma, John Yelton, K. M. Ecklund, H. Kagan, C. P. O'Grady, Jayashree Roy, P. Gaidarev, M.A. Palmer, C. D. Jones, G. J. Zhou, J. J. Thaler, N. Hancock, M. B. Spencer, N. Kwak, R. S. Galik, B. Nemati, G. H. A. Viehhauser, V.G. Shelkov, J. W. Hinson, T. Hart, C.Y. Prescott, R. J. Morrison, Mats A Selen, S. Roberts, B. E. Berger, D. Y.J. Kim, M. Lohner, I. Narsky, M. Bishai, J. J. O'Neill, D. M. Coffman, J. L. Rodriguez, H. A. Cho, A. J. Sadoff, A. J.R. Weinstein, T. Riehle, B. K. Heltsley, Frank Würthwein, S. J. Lee, Jianqiao Ye, G. D. Gollin, P. S. Drell, N. B. Mistry, R. J. Wilson, Vipul Jain, S. Prell, E. Gerndt, C. Qiao, T. E. Coan, Vitaliy Fadeyev, K. Honscheid, D. B. MacFarlane, N. Menon, C. R. Ng, C. Darling, A. Soffer, S. W. Gray, J. Mevissen, I. Karliner, Michael S. Witherell, T. K. Nelson, Ryszard Stroynowski, D. Fujino, A. M. Smith, J. E. Duboscq, K. W. Edwards, M.K. Sung, P. I. Hopman, H. N. Nelson, J. Kandaswamy, T. Bergfeld, S. J. Richichi, A. Wolf, Igor Volobouev, M. M. Zoeller, J. A. Ernst, P. Skubic, Alexander Ershov, S. E. Csorna, M. Gao, J. Gronberg, H. P. Paar, K. Kinoshita, Ilya Korolkov, G. W. Brandenburg, E. Nordberg, G. S. Ludwig, D. Peterson, K. W. McLean, R. Godang, T. Lee, M. Schmidtler, R. Mountain, M. Dickson, D. G. Cassel, R. Poling, B. I. Eisenstein, Philip Baringer, Xiangjun Xing, B. H. Behrens, R. Janicek, Harold S. Park, Alice Bean, Kenneth Bloom, G. Eigen, S.C. Timm, M. Chadha, James E. Fast, D. Ugolini, D. A. Roberts, Anders Ryd, M. Athanas, Sz Márka, Robert K. Kutschke, Karl Berkelman, A. Efimov, D. Riley, S. Blinov, M. L. Perl, Yuichi Kubota, D. M. Asner, and P. M. Patel
- Subjects
Combinatorics ,Physics ,General Physics and Astronomy ,Production (computer science) - Abstract
We have observed new channels for $\ensuremath{\tau}$ decays with an $\ensuremath{\eta}$ in the final state. We study 3-prong tau decays, using the $\ensuremath{\eta}\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}$ and $\ensuremath{\eta}\ensuremath{\rightarrow}3{\ensuremath{\pi}}^{0}$ decay modes and 1-prong decays with two ${\ensuremath{\pi}}^{0}$'s using the $\ensuremath{\eta}\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}$ channel. The measured branching fractions are $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}({3.4}_{\ensuremath{-}0.5}^{+0.6}\ifmmode\pm\else\textpm\fi{}0.6)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}2{\ensuremath{\pi}}^{0}\ensuremath{\eta}{\ensuremath{\nu}}_{\ensuremath{\tau}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}(1.4\ifmmode\pm\else\textpm\fi{}0.6\ifmmode\pm\else\textpm\fi{}0.3)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$. We observe clear evidence for ${f}_{1}\ensuremath{\rightarrow}\ensuremath{\eta}\ensuremath{\pi}\ensuremath{\pi}$ substructure and measure $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{f}_{1}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\nu}}_{\ensuremath{\tau}})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}({5.8}_{\ensuremath{-}1.3}^{+1.4}\ifmmode\pm\else\textpm\fi{}1.8)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$. We have also searched for ${\ensuremath{\eta}}^{\ensuremath{'}}(958)$ production and obtain 90% C.L. upper limits $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\eta}}^{\ensuremath{'}}{\ensuremath{\nu}}_{\ensuremath{\tau}})l7.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ and $B({\ensuremath{\tau}}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{\ensuremath{\pi}}^{0}{\ensuremath{\eta}}^{\ensuremath{'}}{\ensuremath{\nu}}_{\ensuremath{\tau}})l8.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$.
- Published
- 1997