51. Plasmonic noise in Si and InGaAs semiconductor nanolayers
- Author
-
G. Sabatini, Susana Perez, Arnaud Bournel, Tomas Gonzalez, Luca Reggiani, J. F. Millithaler, Christophe Palermo, Luca Varani, Javier Mateos, J. Pousset, Philippe Dollfus, Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Térahertz, hyperfréquence et optique (TéHO), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Ingegneria dell’Innovazione and Istituto Nazionale di Fisica della Materia, Universita` di Lecce, Departamento de Fisica Aplicada, Universidad de Salamanca, Universidad de Salamanca, Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), L. Varani, and L. Varani, C. Palermo and G. Bastard
- Subjects
010302 applied physics ,Physics ,History ,Oscillation ,business.industry ,Doping ,Analytical chemistry ,020206 networking & telecommunications ,02 engineering and technology ,Plasma ,Dielectric ,Plasma oscillation ,01 natural sciences ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Computer Science Applications ,Education ,Semiconductor ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Atomic physics ,business ,ComputingMilieux_MISCELLANEOUS ,Noise (radio) ,Plasmon - Abstract
By Monte Carlo simulations we investigate the spectrum of voltage fluctuations of Si layers of variable thickness W in the range 2 ÷ 100 nm and variable length L in the range 10÷1000 nm embedded in an external dielectric medium. Calculations are performed at T = 300 K for di!erent doping levels and in the presence of an external bias of increasing strength. For W ! 100 nm and carrier densities of 5 " 10 17 and 5 " 10 18 cm ! 3 the peaks agree with the value of the three dimensional (3D) plasma frequency. For W # 10 nm the results exhibit a plasma frequency that depends on L, thus implying that the oscillation mode is dispersive. The corresponding frequency covers a wide range of values 0.2 ÷ 10 THz and is in agreement with the values predicted by existing analytical models. At su"ciently high bias the 2D plasma peak is washed out and we observe the onset of a peak in the subTHz region which, by analogy with the results obtained in n-InGaAs layers, is associated with transit time instabilities induced by current saturation conditions.
- Published
- 2009
- Full Text
- View/download PDF