51. Constructive and Synthetic Reducibility Degrees: Post’s Problem for Many-One and Truth-Table Reducibility in Coq
- Author
-
Forster, Yannick, Jahn, Felix, Gallinette : vers une nouvelle génération d'assistant à la preuve (GALLINETTE), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Nantes Université (Nantes Univ), Saarland University [Saarbrücken], and Laboratoire des Sciences du Numérique de Nantes (LS2N)
- Subjects
type theory ,computability theory ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,Coq ,constructive mathematics ,Theory of computation → Constructive mathematics ,Theory of computation → Type theory - Abstract
We present a constructive analysis and machine-checked theory of one-one, many-one, and truth-table reductions based on synthetic computability theory in the Calculus of Inductive Constructions, the type theory underlying the proof assistant Coq. We give elegant, synthetic, and machine-checked proofs of Post’s landmark results that a simple predicate exists, is enumerable, undecidable, but many-one incomplete (Post’s problem for many-one reducibility), and a hypersimple predicate exists, is enumerable, undecidable, but truth-table incomplete (Post’s problem for truth-table reducibility). In synthetic computability, one assumes axioms allowing to carry out computability theory with all definitions and proofs purely in terms of functions of the type theory with no mention of a model of computation. Proofs can focus on the essence of the argument, without having to sacrifice formality. Synthetic computability also clears the lense for constructivisation. Our constructively careful definition of simple and hypersimple predicates allows us to not assume classical axioms, not even Markov’s principle, still yielding the expected strong results., LIPIcs, Vol. 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), pages 21:1-21:21
- Published
- 2023
- Full Text
- View/download PDF