51. Transmembrane signalling in human monocyte/mesangial cell co-cultures: role of cytosolic Ca(2+).
- Author
-
Menè P, Festuccia F, Polci R, Pugliese F, and Cinotti GA
- Subjects
- Cell Communication, Coculture Techniques, Glomerular Mesangium cytology, Humans, U937 Cells, Calcium metabolism, Cytosol metabolism, Glomerular Mesangium metabolism, Monocytes metabolism
- Abstract
Background: Adhesion of monocytes triggers apoptosis, cytotoxicity, cytokine release, and later proliferation of cultured human mesangial cells (HMC). In the search for transmembrane signals transducing the interaction of HMC adhesion molecules with leukocyte counterreceptors, we measured variations of cytosolic Ca(2+) ([Ca(2+)](i)) in HMC and monocytes of the U937 cell line during 6-h co-cultures., Methods: Monolayer cultures of HMC and suspensions of U937 cells were loaded with the fluoroprobe fura 2-AM and subsequently co-cultured for 6 h while separately monitoring by microfluorometry the Ca(2+)-dependent 500 nm fluorescent emission of each cell line at fixed intervals upon excitation at 340/380 nm., Results: U937 and peripheral blood monocyte adhesion was followed in HMC by a slow, progressive rise of [Ca(2+)](i) from basal levels of 96+/-9 nM to 339+/-54 at 60 min and 439+/-44 nM at 3 h. The [Ca(2+)](i) elevation reached a steady state thereafter, while parallel monolayers incubated with control media maintained resting levels throughout the co-culture with stable fluoroprobe retention. Receptor sensitivity to vasoconstrictor agents, including compounds not released by monocytes, such as angiotensin II, was rapidly downregulated in HMC co-cultured with U937 cells. No [Ca(2+)](i) changes could be elicited by the octapeptide or by the TxA(2) analogue, U-46619, as early as 30 min after exposure to U937 cells. No [Ca(2+)](i) changes were observed in U937 cells throughout the co-culture. Conditioned media from monocytes and from co-cultured HMC+U937 cells had no effect on [Ca(2+)](i) of HMC. Ca(2+) entry leading to fura 2 saturation was still inducible by Ca(2+) ionophores, such as ionomycin and 4-Br-A23187, which also inhibited the responses to vasoconstrictors. Ca(2+)-free solutions prevented the [Ca(2+)](i) rise as well as subsequent receptor inactivation, implicating Ca(2+) influx through store-operated Ca(2+) channels (SOC), a major pathway for Ca(2+) entry in these cultured cells. Ca(2+) influx was confirmed by Mn(2+)-quenching of fura 2., Conclusions: In HMC, early changes in [Ca(2+)](i) signal for monocyte adhesion in a co-culture model of glomerular inflammation. This signalling mechanism may mediate the functional responses elicited in glomerular cells by leukocytes, including downregulation of receptors for vasoactive agents.
- Published
- 2002
- Full Text
- View/download PDF