51. A Numerical Approach for the Mechanical Analysis of Superconducting Rutherford-Type Cables Using Bimetallic Description
- Author
-
Véronique Aubin, Damien Durville, Nicolas Lermé, Gilles Lenoir, Francois Nunio, Eric Maire, Jean-Yves Buffiere, Pierre Manil, Yamen Othmani, Petr Dokládal, Maria S. Commisso, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de mécanique des sols, structures et matériaux (MSSMat), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), Centre de Morphologie Mathématique (CMM), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Mines Paris - PSL (École nationale supérieure des mines de Paris)
- Subjects
Materials science ,Numerical models ,02 engineering and technology ,Superconducting magnetic energy storage ,Superconducting magnet ,01 natural sciences ,Stress (mechanics) ,chemistry.chemical_compound ,Condensed Matter::Superconductivity ,Superconducting magnets ,0103 physical sciences ,Electrical and Electronic Engineering ,Niobium-tin ,010306 general physics ,[PHYS]Physics [physics] ,Superconductivity ,Superconducting cables ,Mechanics ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Conductor ,chemistry ,Magnet ,Bundle ,Solid modeling ,Three-dimensional displays ,0210 nano-technology ,Copper - Abstract
International audience; Low-temperature superconductors are widely used in high-field magnets, mostly within Rutherford-type cables. The run for higher fields leads to greater forces on the conductor, which is pushed closer to its mechanical limit. Managing the higher strain and stress levels on the conductor supposes to perform simulation at the strand level, especially with strain-sensitive superconductors such as Nb3Sn. Three-dimensional models are necessary because inside of a magnet, the conductor is subject to a complex combination of axial and transverse loads. Superconducting cables are anisotropic composite structures that can comprise superconducting strands, insulation materials, stabilizing parts, porosities, etc. They have a multiscale architecture, the performance at the magnet scale being driven by the filament scale. This paper proposes a numerical approach for 3-D finite-element (FE) modeling of Rutherford cables, at the scale of the strand. The 3-D mesh of two reference cables is built with a simplified cable forming model. The accuracy of this geometrical model is assessed by comparing sections of the simulated mesh with tomographic data, using relevant criteria and specific geometry analysis tools. In this approach, the strand is considered as bimetallic, with a copper core, a superconducting bundle ring, and an outer copper ring. After mechanical 3-D FE computation on this bimetallic mesh, the strain/stress state on the local compounds of the strand (including Nb3Sn filaments) is obtained by strain projection. The strain/stress state on the Nb3Sn filaments can be used to estimate the cable current transport capability, thanks to the existing scaling laws.
- Published
- 2017
- Full Text
- View/download PDF