51. Gradient Extension of Classical Material Models From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales
- Author
-
Aifantis, Elias C.
- Subjects
Physics - Classical Physics - Abstract
The various mathematical models developed in the past to interpret the behavior of natural and manmade materials were based on observations and experiments made at that time. Classical laws (such as Newton's for gravity, Hooke's for elasticity, Navier-Stokes for fluidity, Fick's/Fourier's for diffusion/heat transfer, Coulomb's for electricity, as well as Maxwell's for electromagnetism and Einstein's for relativity) formed the basis of current technology and shaping of our civilization. The discovery of new phenomena with the aid of recently developed experimental probes have led to various modifications of these laws across disciplines and the scale spectrum: from subatomic and elementary particle physics to cosmology and from atomistic and nano/micro to macro/giga scales. The emergence of nanotechnology and the further advancement of space technology are ultimately connected with the design of novel tools for observation and measurements, as well as the development of new methods and approaches for quantification and understanding. The paper first reviews the author's previously developed weakly nonlocal or gradient models for elasticity, diffusion and plasticity within a unifying internal length gradient (ILG) framework. It then proposes a similar extension for fluids and Maxwell's equations of electromagnetism. Finally, it ventures a gradient modification of Newton's law of gravity and examines its implications to some problems of elementary particle physics, also relevant to cosmology. Along similar lines, it suggests an analogous extension of London's quantum mechanical potential to include both an "attractive" and a "repulsive" branch. It concludes with some comments on a fractional generalization of the ILG framework.
- Published
- 2019