51. Bone marrow segmentation in leukemia using diffusion andT2 weighted echo planar magnetic resonance imaging
- Author
-
Lawrence H. Schwartz, Antonio Lauto, Ann A. Jakubowski, Eric Lis, Jonathan P. Dyke, Douglas Ballon, and Erika Schneider
- Subjects
medicine.diagnostic_test ,business.industry ,Chronic lymphocytic leukemia ,Magnetic resonance imaging ,medicine.disease ,Leukemia ,medicine.anatomical_structure ,Acute lymphocytic leukemia ,Maximum intensity projection ,medicine ,Molecular Medicine ,Abdomen ,Radiology, Nuclear Medicine and imaging ,Bone marrow ,business ,Nuclear medicine ,Spectroscopy ,Chronic myelogenous leukemia - Abstract
Magnetic resonance images of leukemic bone marrow were acquired over large regions of the pelvis and lower abdomen with minimal interference from overlying tissues using diffusion and T2 weighted echo planar imaging. Data acquisition times were on the order of 1 min for scanning volumes of up to 25 l at a spatial resolution of 31 ml. A survey of 21 patients with leukemia and eight healthy adult volunteers was undertaken to determine the magnitude of the observed effect and its dependence upon specific pathologies. The acquisition methods yielded high- quality segmentation of leukemic bone marrow prior to therapy in seven of seven patients with acute lymphocytic leukemia, chronic lymphocytic leukemia or chronic myelogenous leukemia, and who had hypercellular (>95%) bone marrow at the time of the study. The quality of the segmentation was sufficient to allow the use of maximum intensity projection images which afforded a convenient evaluation of both intra- and extramedullary disease. The measured signal-to-noise ratios agreed with a theoretical estimate that accounted for the percentage cellularity, T2 relaxation time of water, and self-diffusion coefficient of water in iliac bone marrow. In addition, the mean signal-to-noise ratios from iliac marrow were strongly dependent upon the time after the initiation of chemotherapeutic regimens, implying that the methods may be useful for therapeutic monitoring. Copyright © 2000 John Wiley & Sons, Ltd.
- Published
- 2000
- Full Text
- View/download PDF