51. Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms
- Author
-
Ena Wang, Francesco M. Marincola, Monica C. Panelli, Kina Smith, David F. Stroncek, Sara Deola, Eleonora Aricò, Dirk Nagorsen, and Christopher Basil
- Subjects
Gene isoform ,Chemokine ,biology ,business.industry ,CD14 ,Research ,autoimmunity ,lcsh:R ,Interleukin ,lcsh:Medicine ,Stimulation ,General Medicine ,Mononuclear phagocyte system ,medicine.disease_cause ,General Biochemistry, Genetics and Molecular Biology ,Autoimmunity ,macrophages ,Interferon ,Immunology ,medicine ,biology.protein ,business ,medicine.drug - Abstract
Background Interferon (IFN)-α is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs). This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS) stimulation in vitro. Results Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-β, IFN-α2b/α2, IFN-αI, IFN-α2, IFN-αC, IFN-αJ1, IFN-αH2, and INF-α4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx)-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-γ. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. Conclusion Seven IFN-α isoforms and IFN-β participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-α in autoimmunity and tumor rejection by including and/or excluding an array of related factors likely to be heterogeneously expressed by distinct sub-populations of individuals in sickness or in response to biological therapy.
- Published
- 2005