D. Pieroni, M. V. Tonkov, J. L. Domenech, Alain Valentin, R. Le Doucen, Jean-Paul Champion, Jean-Michel Hartmann, Nguyen-Van-Thanh, Tony Gabard, C. Brodbeck, I. M. Grigoriev, C. Claveau, Dionisio Bermejo, Laboratoire de Photophysique Moléculaire (PPM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'Université de Bourgogne (LPUB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Physique moléculaire et applications (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Physique des atomes, lasers, molécules et surfaces (PALMS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institute of Physics, St. Petersburg State University, St Petersburg State University (SPbU), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Laboratoire de Photophysique Moléculaire ( PPM ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique de l'Université de Bourgogne ( LPUB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Instituto de Estructura de la Materia ( IEM ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Laboratoire de Physique Moléculaire et Applications, UPR 136 CNRS ( LPMA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ), Physique des atomes, lasers, molécules et surfaces ( PALMS ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), and St Petersburg State University ( SPbU )
Line mixing effects are studied in the v3 band of CH4 perturbed by Ar and He at room temperature. Experiments have been made in the 2800-3200 cm-1 spectral region using four different setups. They cover a wide range of total densities, including low (0.25-2 atm), medium (25-100 atm), and high (200-1000 atm) pressure conditions. Analysis of the spectra demonstrates that the spectral shapes (of the band, the Q branch, the P and R manifolds,...) are significantly influenced by line mixing. The theoretical approach proposed in the preceding paper is used in order to model and analyze these effects. As done previously, semiclassical state-to-state rates are used together with a few empirical constants. Comparisons between measurements and spectra computed with and without the inclusion of line mixing are made. They prove the quality of the approach which satisfactorily accounts for the effects of pressure and of rotational quantum numbers on the spectral shape. It is shown that collisions with He and Ar lead to different line-coupling schemes (e.g., more coupling within the branches and less between branches) and hence to different shapes. The influence of line coupling between different branches and manifolds is evidenced and studied using high pressure spectra and absorption in the band wings. © 1999 American Institute of Physics.