51. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction
- Author
-
Francesc E. Borràs, S. Roura, Adriana Cserkóová, Paloma Gastelurrutia, Miriam Morón-Font, Anna Rosell, Carolina Gálvez-Montón, Alexandra Calle, Marta Monguió-Tortajada, Anna Morancho, Antoni Bayes-Genis, Marta Clos-Sansalvador, Miguel Ángel Ramírez, Cristina Prat-Vidal, Institut Català de la Salut, [Monguió-Tortajada M] ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain. REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain. Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain. CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. [Prat-Vidal C, Gastelurrutia P] ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain. CIBERCV, Instituto de Salud Carlos III, Madrid, Spain. Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain. [Moron-Font M] REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain. [Clos-Sansalvador M] REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain. Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Bellaterra, Spain. [Calle A] Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain. [Morancho A, Rosell A] Laboratori d'Investigació Neurovascular, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain, and Vall d'Hebron Barcelona Hospital Campus
- Subjects
QH301-705.5 ,Angiogenesis ,0206 medical engineering ,Biomedical Engineering ,Adipose tissue ,Inflammation ,02 engineering and technology ,Cardiac tissue engineering ,Exosomes ,Article ,Cardiovascular Diseases::Heart Diseases::Myocardial Ischemia::Myocardial Infarction [DISEASES] ,Biomaterials ,Otros calificadores::Otros calificadores::Otros calificadores::/trasplante [Otros calificadores] ,In vivo ,Cells::Cellular Structures::Extracellular Space::Extracellular Vesicles [ANATOMY] ,medicine ,Macrophage ,Miocardi - Regeneració ,Tissue engineering ,Infart de miocardi - Tractament ,Biology (General) ,Materials of engineering and construction. Mechanics of materials ,Otros calificadores::/terapia [Otros calificadores] ,Migration ,Other subheadings::Other subheadings::Other subheadings::/transplantation [Other subheadings] ,Mesenchymal stem/stromal cells ,Chemistry ,células::estructuras celulares::espacio extracelular::vesículas extracelulares [ANATOMÍA] ,Mesenchymal stem cell ,Infiltration ,Other subheadings::/therapy [Other subheadings] ,021001 nanoscience & nanotechnology ,020601 biomedical engineering ,enfermedades cardiovasculares::enfermedades cardíacas::isquemia miocárdica::infarto de miocardio [ENFERMEDADES] ,Microvesicles ,Cell biology ,Infart de miocardi ,Myocardial infarction ,Enginyeria de teixits ,TA401-492 ,Tumor necrosis factor alpha ,medicine.symptom ,0210 nano-technology ,Biotechnology - Abstract
The administration of extracellular vesicles (EV) from mesenchymal stromal cells (MSC) is a promising cell-free nanotherapy for tissue repair after myocardial infarction (MI). However, the optimal EV delivery strategy remains undetermined. Here, we designed a novel MSC-EV delivery, using 3D scaffolds engineered from decellularised cardiac tissue as a cell-free product for cardiac repair. EV from porcine cardiac adipose tissue-derived MSC (cATMSC) were purified by size exclusion chromatography (SEC), functionally analysed and loaded to scaffolds. cATMSC-EV markedly reduced polyclonal proliferation and pro-inflammatory cytokines production (IFNγ, TNFα, IL12p40) of allogeneic PBMC. Moreover, cATMSC-EV recruited outgrowth endothelial cells (OEC) and allogeneic MSC, and promoted angiogenesis. Fluorescently labelled cATMSC-EV were mixed with peptide hydrogel, and were successfully retained in decellularised scaffolds. Then, cATMSC-EV-embedded pericardial scaffolds were administered in vivo over the ischemic myocardium in a pig model of MI. Six days from implantation, the engineered scaffold efficiently integrated into the post-infarcted myocardium. cATMSC-EV were detected within the construct and MI core, and promoted an increase in vascular density and reduction in macrophage and T cell infiltration within the damaged myocardium. The confined administration of multifunctional MSC-EV within an engineered pericardial scaffold ensures local EV dosage and release, and generates a vascularised bioactive niche for cell recruitment, engraftment and modulation of short-term post-ischemic inflammation., Graphical abstract Image 1, Highlights • A bioactive engineered scaffold can locally deliver EV to the infarcted myocardium. • Porcine cATMSC-EV promote endothelial cell recruitment and in vivo vascularization. • Porcine cATMSC-EV reduce inflammation, and macrophage and T cell infiltration.
- Published
- 2021