51. Fe3+ spin transition in CaFe2O4 at high pressure
- Author
-
Mauro Gemmi, Marco Merlini, Michael Hanfland, Laura Simonelli, Pierre Strobel, Simo Huotari, Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano [Milano] (UNIMI), European Synchrotron Radiation Facility (ESRF), Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Phase transition ,Bulk modulus ,Spin states ,Chemistry ,[SDE.MCG]Environmental Sciences/Global Changes ,Spin transition ,spin transition ,Crystal structure ,010502 geochemistry & geophysics ,01 natural sciences ,Bond length ,Crystal ,Crystallography ,high pressure ,Geophysics ,CaFe2O4 ,Geochemistry and Petrology ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.CRIS]Chemical Sciences/Cristallography ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,Single crystal ,0105 earth and related environmental sciences - Abstract
Single-crystal diffraction data collected for CaFe 2 O 4 at high pressure reveal above 50 GPa an isosymmetric phase transition (i.e., no change in symmetry) marked by a volume decrease of 8.4%. X-ray emission spectroscopic data at ambient and high pressure confirm that the nature of the phase transition is related to the Fe 3+ high-spin/low-spin transition. The bulk modulus K 0 calculated with a Birch Murnaghan EoS ( K ′ = 4) is remarkably different [ K 0 = 159(2) GPa for CaFe 2 O 4 “high spin” and K 0 = 235(10) GPa for CaFe 2 O 4 “low spin”]. Crystal structure refinements reveal a decrease of 12% of the Fe 3+ crystallographic site volume. The geometrical features of the low-spin Fe 3+ crystallographic site at high pressure (bond lengths, volume) indicate a relevant decrease of Fe 3+ -O bond lengths, and the results are in agreement with tabulated values for crystal radii of Fe 3+ in high- and low-spin state. The reduced crystal size of Fe 3+ in the low-spin state suggest that in lower mantle assemblages, Fe 3+ partitioning in crystallographic sites should be strongly affected by the iron spin state.
- Published
- 2010
- Full Text
- View/download PDF