51. Identification of Local Lubrication Regimes on Textured Surfaces by 3D Roughness Curvature Radius
- Author
-
Maxence Bigerelle, Laurent Dubar, Krzysztof Kubiak, Cédric Hubert, Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), and University of Liverpool
- Subjects
Surface (mathematics) ,0209 industrial biotechnology ,Materials science ,business.industry ,General Engineering ,Contact analysis ,Geometry ,02 engineering and technology ,Surface finish ,Radius ,Tribology ,[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] ,Curvature ,020303 mechanical engineering & transports ,020901 industrial engineering & automation ,Optics ,0203 mechanical engineering ,Lubrication ,TJ ,business ,Asperity (materials science) - Abstract
This paper proposes a new method of 3D roughness peaks curvature radius calculation and its application to tribological contact analysis as a characteristic signature of tribological contact. This method is introduced through the classical approach of calculation of radius of asperity in 2D. Actually, the proposed approach provides a generalization of Nowicki's method [], depending on horizontal lines intercepting the studied profile. Here, the basic idea consists in intercepting the rough surface by a horizontal plane and to calculate the cross section area without including “islands into islands”, i.e. the small peaks enclosed in bigger ones. Then, taking into account the maximal value of the height amplitude of the roughness included into this area, an appropriate algorithm is proposed, without requiring the classical hypothesis of derivability, which may be unstable when applied to engineering surfaces. This methodology is validated on simulated surfaces, and applied to engineering surfaces created experimentally, with a laboratory aluminium strip drawing process. The regions of the textured and lubricated specimens surface are analysed, and the results gives interesting prospects to qualitatively identify the local lubrication regimes: regions with high curvature radii correspond to severe contact (boundary/mixed lubrication regime) while regions with low curvature radii correspond to hydrodynamic lubrication regime.
- Published
- 2014
- Full Text
- View/download PDF