51. Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection
- Author
-
Bindu L. Raveendra, Jingyue Ju, Angel A. Martí, Nathan Stevens, Daniel L. Akins, James J. Russo, Xiaoxu Li, Steffen Jockusch, Nicholas J. Turro, Zengmin Li, Sergey Kalachikov, and Irina Morozova
- Subjects
Fluorophore ,Chemistry ,Organic Chemistry ,Analytical chemistry ,Fluorescence in the life sciences ,Photochemistry ,Biochemistry ,Fluorescence ,Fluorescence spectroscopy ,Article ,chemistry.chemical_compound ,Förster resonance energy transfer ,Drug Discovery ,Fluorescence cross-correlation spectroscopy ,Laser-induced fluorescence ,Spectroscopy - Abstract
We report the design, synthesis and characterization of binary oligonucleotide probes for mRNA detection. The probes were designed to avoid common problems found in standard binary probes such as direct excitation of the acceptor fluorophore and overlap between the donor and acceptor emission spectra. Two different probes were constructed that contained an array of either two or three dyes and that were characterized using steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy and fluorescence depolarization measurements. The three-dye binary probe (BP-3d) consists of a Fam fluorophore which acts as a donor, collecting light and transferring it as energy to Tamra, which subsequently transfers energy to Cy5 when the two probes are hybridized to mRNA. This design allows the use of 488 nm excitation, which avoids the direct excitation of Cy5 and at the same time provides a good fluorescence resonance energy transfer (FRET) efficiency. The two-dye binary probe system (BP-2d) was constructed of Alexa488 and Cy5 fluorophores. Although the overlap between the fluorescence of Alexa488 and the absorption of Cy5 is relatively low, FRET still occurs due to their close physical proximity when the probes are hybridized to mRNA. This framework also decreases the direct excitation of Cy5 and reduces the fluorescence overlap between the donor and the acceptor. Picosecond time-resolved spectroscopy showed a reduction in the fluorescence lifetime of donor fluorophores after the formation of the hybrid between the probes and target mRNA. Interestingly, BP-2d in the presence of mRNA shows a slow rise in the fluorescence decay of Cy5 due to a relatively low FRET rate, which together with the reduction in the Alexa488 lifetime provides a way to improve the signal to background ratio using time-resolved fluorescence spectra (TRES). In addition, fluorescence depolarization measurements showed complete depolarization of the acceptor dyes (Cy5) for both BP-3d (due to sequential FRET steps) and BP-2d (due to the relatively low FRET rate) in the presence of the mRNA target.
- Published
- 2007