76 results on '"Bentert, Matthias"'
Search Results
52. On the Complexity of Finding a Sparse Connected Spanning Subgraph in a Non-Uniform Failure Model
- Author
-
Bentert, Matthias (author), Schestag, J. (author), Sommer, Frank (author), Bentert, Matthias (author), Schestag, J. (author), and Sommer, Frank (author)
- Abstract
We study a generalization of the classic Spanning Tree problem that allows for a non-uniform failure model. More precisely, edges are either safe or unsafe and we assume that failures only affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected graph G = (V,E) in which the edge set E is partitioned into a set S of safe edges and a set U of unsafe edges and the task is to find a set T of at most k edges such that T -{u} is connected and spans V for any unsafe edge u ∈ T. Unweighted Flexible Graph Connectivity generalizes both Spanning Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time algorithms for many smaller parameters are unlikely under standard parameterized complexity assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible Graph Connectivity admits an FPT-time algorithm when parameterized by the number of unsafe edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a solution. We show that this parameter also leads to an FPT-time algorithm., Discrete Mathematics and Optimization
- Published
- 2023
- Full Text
- View/download PDF
53. Cluster Editing with Overlapping Communities
- Author
-
Emmanuel Arrighi and Matthias Bentert and Pål Grønås Drange and Blair D. Sullivan and Petra Wolf, Arrighi, Emmanuel, Bentert, Matthias, Drange, Pål Grønås, Sullivan, Blair D., Wolf, Petra, Emmanuel Arrighi and Matthias Bentert and Pål Grønås Drange and Blair D. Sullivan and Petra Wolf, Arrighi, Emmanuel, Bentert, Matthias, Drange, Pål Grønås, Sullivan, Blair D., and Wolf, Petra
- Abstract
Cluster Editing, also known as correlation clustering, is a well-studied graph modification problem. In this problem, one is given a graph and allowed to perform up to k edge additions and deletions to transform it into a cluster graph, i.e., a graph consisting of a disjoint union of cliques. However, in real-world networks, clusters are often overlapping. For example, in social networks, a person might belong to several communities - e.g. those corresponding to work, school, or neighborhood. Another strong motivation comes from language networks where trying to cluster words with similar usage can be confounded by homonyms, that is, words with multiple meanings like "bat". The recently introduced operation of vertex splitting is one natural approach to incorporating such overlap into Cluster Editing. First used in the context of graph drawing, this operation allows a vertex v to be replaced by two vertices whose combined neighborhood is the neighborhood of v (and thus v can belong to more than one cluster). The problem of transforming a graph into a cluster graph using at most k edge additions, edge deletions, or vertex splits is called Cluster Editing with Vertex Splitting and is known to admit a polynomial kernel with respect to k and an O(9^{k²} + n + m)-time (parameterized) algorithm. However, it was not known whether the problem is NP-hard, a question which was originally asked by Abu-Khzam et al. [Combinatorial Optimization, 2018]. We answer this in the affirmative. We further give an improved algorithm running in O(2^{7klog k} + n + m) time.
- Published
- 2023
- Full Text
- View/download PDF
54. Polynomial-time data reduction for weighted problems beyond additive goal functions
- Author
-
Bentert, Matthias, primary, van Bevern, René, additional, Fluschnik, Till, additional, Nichterlein, André, additional, and Niedermeier, Rolf, additional
- Published
- 2023
- Full Text
- View/download PDF
55. Parameterized Complexity of Diameter
- Author
-
Bentert, Matthias, primary and Nichterlein, André, additional
- Published
- 2022
- Full Text
- View/download PDF
56. USING A GEOMETRIC LENS TO FIND A-DISJOINT SHORTEST PATHS.
- Author
-
BENTERT, MATTHIAS, NICHTERLEIN, ANDRÉ, RENKEN, MALTE, and ZSCHOCHE, PHILIPP
- Subjects
- *
POLYNOMIAL time algorithms , *UNDIRECTED graphs , *COMPUTATIONAL complexity , *GRAPH algorithms , *ALGORITHMS , *DYNAMIC programming - Abstract
Given an undirected n-vertex graph and k pairs (si,ti),..,, (sfc,tfc) of terminal vertices, the fc-DlSJOINT SHORTEST PATHS (fc-SDP) problem asks whether there are k pairwise vertex-disjoint paths Pi,...,Pk such that Pi is a shortest s-ti-path for each i E [fc]. Recently, Lochet [Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA '21), SIAM, 2021, pp. 169-178] provided an algorithm that solves fc-SDP in no time, answering a 20-year old question about the computational complexity of fc-SDP for constant fc. On the one hand, we present an improved no-time algorithm based on a novel geometric view on this problem. For the special case fc = 2 on m-edge graphs, we show that the running time can be further reduced to O(nm) by small modifications of the algorithm and a refined analysis. On the other hand, we show that fc-SDP is W[l]-hard with respect to fc, showing that the dependency of the degree of the polynomial running time on the parameter fc is presumably unavoidable. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
57. Parameterized Aspects of Triangle Enumeration
- Author
-
Bentert, Matthias, primary, Fluschnik, Till, additional, Nichterlein, André, additional, and Niedermeier, Rolf, additional
- Published
- 2017
- Full Text
- View/download PDF
58. Parameterized Algorithms for Power-Efficient Connected Symmetric Wireless Sensor Networks
- Author
-
Bentert, Matthias, primary, van Bevern, René, additional, Nichterlein, André, additional, and Niedermeier, Rolf, additional
- Published
- 2017
- Full Text
- View/download PDF
59. Parameterized Algorithms for Power-Efficiently Connecting Wireless Sensor Networks: Theory and Experiments
- Author
-
Bentert, Matthias, primary, van Bevern, René, additional, Nichterlein, André, additional, Niedermeier, Rolf, additional, and Smirnov, Pavel V., additional
- Published
- 2022
- Full Text
- View/download PDF
60. Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters
- Author
-
Bentert, Matthias, primary, Heeger, Klaus, additional, and Knop, Dušan, additional
- Published
- 2021
- Full Text
- View/download PDF
61. Elemente des dynamischen und 2-SAT-Programmierens: Pfade, Bäume und Schnitte
- Author
-
Bentert, Matthias, Niedermeier, Rolf, Bazgan, Cristina, Husfeldt, Thore, and Technische Universität Berlin
- Subjects
ddc:005 - Abstract
Published in print by Universitätsverlag der TU Berlin, ISBN 978-3-7983-3209-6 (ISSN 2199-5249) In dieser Arbeit entwickeln wir schnellere exakte Algorithmen (schneller bezüglich der Worst-Case-Laufzeit) für Spezialfälle von Graphproblemen. Diese Algorithmen beruhen größtenteils auf dynamischem Programmieren und auf 2-SAT-Programmierung. Dynamisches Programmieren beschreibt den Vorgang, ein Problem rekursiv in Unterprobleme zu zerteilen, sodass diese Unterprobleme gemeinsame Unterunterprobleme haben. Wenn diese Unterprobleme optimal gelöst wurden, dann kombiniert das dynamische Programm diese Lösungen zu einer optimalen Lösung des Ursprungsproblems. 2-SAT-Programmierung bezeichnet den Prozess, ein Problem durch eine Menge von 2-SAT-Formeln (aussagenlogische Formeln in konjunktiver Normalform, wobei jede Klausel aus maximal zwei Literalen besteht) auszudrücken. Dabei müssen erfüllende Wahrheitswertbelegungen für eine Teilmenge der 2-SAT-Formeln zu einer Lösung des Ursprungsproblems korrespondieren. Wenn eine 2-SAT-Formel erfüllbar ist, dann kann eine erfüllende Wahrheitswertbelegung in Linearzeit in der Länge der Formel berechnet werden. Wenn entsprechende 2-SAT-Formeln also in polynomieller Zeit in der Eingabegröße des Ursprungsproblems erstellt werden können, dann kann das Ursprungsproblem in polynomieller Zeit gelöst werden. Im folgenden beschreiben wir die Hauptresultate der Arbeit. Bei dem Diameter-Problem wird die größte Distanz zwischen zwei beliebigen Knoten in einem gegebenen ungerichteten Graphen gesucht. Das Ergebnis (der Durchmesser des Eingabegraphen) gehört zu den wichtigsten Parametern der Graphanalyse. In dieser Arbeit erzielen wir sowohl positive als auch negative Ergebnisse für Diameter. Wir konzentrieren uns dabei auf parametrisierte Algorithmen für Parameterkombinationen, die in vielen praktischen Anwendungen klein sind, und auf Parameter, die eine Distanz zur Trivialität messen. Bei dem Problem Length-Bounded Cut geht es darum, ob es eine Kantenmenge begrenzter Größe in einem Eingabegraphen gibt, sodass das Entfernen dieser Kanten die Distanz zwischen zwei gegebenen Knoten auf ein gegebenes Minimum erhöht. Wir bestätigen in dieser Arbeit eine Vermutung aus der wissenschaftlichen Literatur, dass Length-Bounded Cut in polynomieller Zeit in der Eingabegröße auf Einheitsintervallgraphen (Intervallgraphen, in denen jedes Intervall die gleiche Länge hat) gelöst werden kann. Der Algorithmus basiert auf dynamischem Programmieren. k-Disjoint Shortest Paths beschreibt das Problem, knotendisjunkte Pfade zwischen k gegebenen Knotenpaaren zu suchen, sodass jeder der k Pfade ein kürzester Pfad zwischen den jeweiligen Endknoten ist. Wir beschreiben ein dynamisches Programm mit einer Laufzeit n^O((k+1)!) für dieses Problem, wobei n die Anzahl der Knoten im Eingabegraphen ist. Dies zeigt, dass k-Disjoint Shortest Paths in polynomieller Zeit für jedes konstante k gelöst werden kann, was für über 20 Jahre ein ungelöstes Problem der algorithmischen Graphentheorie war. Das Problem Tree Containment fragt, ob ein gegebener phylogenetischer Baum T in einem gegebenen phylogenetischen Netzwerk N enthalten ist. Ein phylogenetisches Netzwerk (bzw. ein phylogenetischer Baum) ist ein gerichteter azyklischer Graph (bzw. ein gerichteter Baum) mit genau einer Quelle, in dem jeder Knoten höchstens eine ausgehende oder höchstens eine eingehende Kante hat und jedes Blatt eine Beschriftung trägt. Das Problem stammt aus der Bioinformatik aus dem Bereich der Suche nach dem Baums des Lebens (der Geschichte der Artenbildung). Wir führen eine neue Variante des Problems ein, die wir Soft Tree Containment nennen und die bestimmte Unsicherheitsfaktoren berücksichtigt. Wir zeigen mit Hilfe von 2-SAT-Programmierung, dass Soft Tree Containment in polynomieller Zeit gelöst werden kann, wenn N ein phylogenetischer Baum ist, in dem jeweils maximal zwei Blätter die gleiche Beschriftung tragen. Wir ergänzen dieses Ergebnis mit dem Beweis, dass Soft Tree Containment NP-schwer ist, selbst wenn N auf phylogenetische Bäume beschränkt ist, in denen jeweils maximal drei Blätter die gleiche Beschriftung tragen. Abschließend betrachten wir das Problem Reachable Object. Hierbei wird nach einer Sequenz von rationalen Tauschoperationen zwischen Agentinnen gesucht, sodass eine bestimmte Agentin ein bestimmtes Objekt erhält. Eine Tauschoperation ist rational, wenn beide an dem Tausch beteiligten Agentinnen ihr neues Objekt gegenüber dem jeweiligen alten Objekt bevorzugen. Reachable Object ist eine Verallgemeinerung des bekannten und viel untersuchten Problems Housing Market. Hierbei sind die Agentinnen in einem Graphen angeordnet und nur benachbarte Agentinnen können Objekte miteinander tauschen. Wir zeigen, dass Reachable Object NP-schwer ist, selbst wenn jede Agentin maximal drei Objekte gegenüber ihrem Startobjekt bevorzugt und dass Reachable Object polynomzeitlösbar ist, wenn jede Agentin maximal zwei Objekte gegenüber ihrem Startobjekt bevorzugt. Wir geben außerdem einen Polynomzeitalgorithmus für den Spezialfall an, in dem der Graph der Agentinnen ein Kreis ist. Dieser Polynomzeitalgorithmus basiert auf 2-SAT-Programmierung. This thesis presents faster (in terms of worst-case running times) exact algorithms for special cases of graph problems through dynamic programming and 2-SAT programming. Dynamic programming describes the procedure of breaking down a problem recursively into overlapping subproblems, that is, subproblems with common subsubproblems. Given optimal solutions to these subproblems, the dynamic program then combines them into an optimal solution for the original problem. 2-SAT programming refers to the procedure of reducing a problem to a set of 2-SAT formulas, that is, boolean formulas in conjunctive normal form in which each clause contains at most two literals. Computing whether such a formula is satisfiable (and computing a satisfying truth assignment, if one exists) takes linear time in the formula length. Hence, when satisfying truth assignments to some 2-SAT formulas correspond to a solution of the original problem and all formulas can be computed efficiently, that is, in polynomial time in the input size of the original problem, then the original problem can be solved in polynomial time. We next describe our main results. Diameter asks for the maximal distance between any two vertices in a given undirected graph. It is arguably among the most fundamental graph parameters. We provide both positive and negative parameterized results for distance-from-triviality-type parameters and parameter combinations that were observed to be small in real-world applications. In Length-Bounded Cut, we search for a bounded-size set of edges that intersects all paths between two given vertices of at most some given length. We confirm a conjecture from the literature by providing a polynomial-time algorithm for proper interval graphs which is based on dynamic programming. k-Disjoint Shortest Paths is the problem of finding (vertex-)disjoint paths between given vertex terminals such that each of these paths is a shortest path between the respective terminals. Its complexity for constant k > 2 has been an open problem for over 20 years. Using dynamic programming, we show that k-Disjoint Shortest Paths can be solved in polynomial time for each constant k. The problem Tree Containment asks whether a phylogenetic tree T is contained in a phylogenetic network N. A phylogenetic network (or tree) is a leaf-labeled single-source directed acyclic graph (or tree) in which each vertex has in-degree at most one or out-degree at most one. The problem stems from computational biology in the context of the tree of life (the history of speciation). We introduce a particular variant that resembles certain types of uncertainty in the input. We show that if each leaf label occurs at most twice in a phylogenetic tree N, then the problem can be solved in polynomial time and if labels can occur up to three times, then the problem becomes NP-hard. Lastly, Reachable Object is the problem of deciding whether there is a sequence of rational trades of objects among agents such that a given agent can obtain a certain object. A rational trade is a swap of objects between two agents where both agents profit from the swap, that is, they receive objects they prefer over the objects they trade away. This problem can be seen as a natural generalization of the well-known and well-studied Housing Market problem where the agents are arranged in a graph and only neighboring agents can trade objects. We prove a dichotomy result that states that the problem is polynomial-time solvable if each agent prefers at most two objects over its initially held object and it is NP-hard if each agent prefers at most three objects over its initially held object. We also provide a polynomial-time 2-SAT program for the case where the graph of agents is a cycle.
- Published
- 2021
62. On Reachable Assignments in Cycles and Cliques
- Author
-
M��ller, Luis and Bentert, Matthias
- Subjects
FOS: Computer and information sciences ,Discrete Mathematics (cs.DM) ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) ,Computer Science - Multiagent Systems ,Multiagent Systems (cs.MA) ,MathematicsofComputing_DISCRETEMATHEMATICS ,Computer Science - Discrete Mathematics - Abstract
The efficient and fair distribution of indivisible resources among agents is a common problem in the field of \emph{Multi-Agent-Systems}. We consider a graph-based version of this problem called Reachable Assignments, introduced by Gourves, Lesca, and Wilczynski [AAAI, 2017]. The input for this problem consists of a set of agents, a set of objects, the agent's preferences over the objects, a graph with the agents as vertices and edges encoding which agents can trade resources with each other, and an initial and a target distribution of the objects, where each agent owns exactly one object in each distribution. The question is then whether the target distribution is reachable via a sequence of rational trades. A trade is rational when the two participating agents are neighbors in the graph and both obtain an object they prefer over the object they previously held. We show that Reachable Assignments is NP-hard even when restricting the input graph to be a clique and develop an $O(n^3)$-time algorithm for the case where the input graph is a cycle with $n$ vertices.
- Published
- 2020
63. Using a Geometric Lens to Find k Disjoint Shortest Paths
- Author
-
Bentert, Matthias, Renken, Malte, Zschoche, Philipp, Bentert, Matthias, Renken, Malte, and Zschoche, Philipp
- Published
- 2021
- Full Text
- View/download PDF
64. A Multivariate Complexity Analysis of the Material Consumption Scheduling Problem
- Author
-
Bentert, Matthias, primary, Bredereck, Robert, additional, Györgyi, Péter, additional, Kaczmarczyk, Andrzej, additional, and Niedermeier, Rolf, additional
- Published
- 2021
- Full Text
- View/download PDF
65. Tree Containment With Soft Polytomies
- Author
-
Bentert, Matthias, primary and Weller, Mathias, additional
- Published
- 2021
- Full Text
- View/download PDF
66. Parameterized Complexity of Min-Power Asymmetric Connectivity
- Author
-
Bentert, Matthias, primary, Haag, Roman, additional, Hofer, Christian, additional, Koana, Tomohiro, additional, and Nichterlein, André, additional
- Published
- 2020
- Full Text
- View/download PDF
67. Comparing Election Methods Where Each Voter Ranks Only Few Candidates
- Author
-
Bentert, Matthias, primary and Skowron, Piotr, additional
- Published
- 2020
- Full Text
- View/download PDF
68. Formale Verifikation von Low-Level Programmen im Rahmen eines modellbasierten Verfeinerungsprozesses (Technischer Bericht: Isabelle/HOL Formalisierung)
- Author
-
Berg, Nils, Bartels, Björn, Danziger, Armin, Grochau Azzi, Guilherme, and Bentert, Matthias
- Subjects
unstructured code ,Hoare logics ,refinement ,ddc:005 ,005 Computerprogrammierung, Programme, Daten ,Isabelle/HOL ,Communicating Sequential Processes - Abstract
This is the technical report for the Isabelle/HOL formalization accompanying the dissertation of Nils Berg. For explanations with regard to content please refer to the dissertation. The intention of this document is to give a mapping from the formalization in the dissertation to the formalization in Isabelle/HOL. Formalized are the parts where user interaction is required, i.e., the first part of the dissertation, where Communicating Sequential Processes (CSP) processes and Communicating Unstructured Code (CUC) programs are related. More specifically, the sections 5.2 to 5.5 of the dissertation are formalized.
- Published
- 2019
69. Efficient Computation of Optimal Temporal Walks under Waiting-Time Constraints
- Author
-
Bentert, Matthias, Himmel, Anne-Sophie, Nichterlein, André, and Niedermeier, Rolf
- Subjects
FOS: Computer and information sciences ,lcsh:T57-57.97 ,lcsh:Applied mathematics. Quantitative methods ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) ,Temporal networks ,Shortest path computation ,Temporal paths ,ddc:004 ,Waiting policies ,Infectious disease spreading - Abstract
Node connectivity plays a central role in temporal network analysis. We provide a comprehensive study of various concepts of walks in temporal graphs, that is, graphs with fixed vertex sets but edge sets changing over time. Taking into account the temporal aspect leads to a rich set of optimization criteria for "shortest" walks. Extending and significantly broadening state-of-the-art work of Wu et al. [IEEE TKDE 2016], we provide an algorithm for computing optimal walks that is capable to deal with various optimization criteria and any linear combination of these. It runs in $O (|V| + |E| \log |E|)$ time where $|V|$ is the number of vertices and $|E|$ is the number of time edges. A central distinguishing factor to Wu et al.'s work is that our model allows to, motivated by real-world applications, respect waiting-time constraints for vertices, that is, the minimum and maximum waiting time allowed in intermediate vertices of a walk. Moreover, other than Wu et al. our algorithm also allows to search for walks that pass multiple subsequent edges in one time step, and it can optimize a richer set of optimization criteria. Our experimental studies indicate that our richer modeling can be achieved without significantly worsening the running time when compared to Wu et al.'s algorithms.
- Published
- 2019
70. Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters
- Author
-
Bentert, Matthias, Heeger, Klaus, Bentert, Matthias, and Heeger, Klaus
- Published
- 2020
- Full Text
- View/download PDF
71. An Adaptive Version of Brandes' Algorithm for Betweenness Centrality
- Author
-
Bentert, Matthias, primary, Dittmann, Alexander, additional, Kellerhals, Leon, additional, Nichterlein, André, additional, and Niedermeier, Rolf, additional
- Published
- 2020
- Full Text
- View/download PDF
72. Listing All Maximal k -Plexes in Temporal Graphs
- Author
-
Bentert, Matthias, primary, Himmel, Anne-Sophie, additional, Molter, Hendrik, additional, Morik, Marco, additional, Niedermeier, Rolf, additional, and Saitenmacher, René, additional
- Published
- 2019
- Full Text
- View/download PDF
73. Inductive $$k$$ k -independent graphs and c-colorable subgraphs in scheduling: a review
- Author
-
Bentert, Matthias, primary, van Bevern, René, additional, and Niedermeier, Rolf, additional
- Published
- 2018
- Full Text
- View/download PDF
74. Listing All Maximal k-Plexes in Temporal Graphs
- Author
-
Bentert, Matthias, primary, Himmel, Anne-Sophie, additional, Molter, Hendrik, additional, Morik, Marco, additional, Niedermeier, Rolf, additional, and Saitenmacher, Rene, additional
- Published
- 2018
- Full Text
- View/download PDF
75. Tree Containment With Soft Polytomies
- Author
-
Bentert, Matthias, Weller, Mathias, Bentert, Matthias, and Weller, Mathias
- Abstract
The Tree Containment problem has many important applications in the study of evolutionary history. Given a phylogenetic network N and a phylogenetic tree T whose leaves are labeled by a set of taxa, it asks if N and T are consistent. While the case of binary N and T has received considerable attention, the more practically relevant variant dealing with biological uncertainty has not. Such uncertainty manifests itself as high-degree vertices ("polytomies") that are "jokers" in the sense that they are compatible with any binary resolution of their children. Contrasting the binary case, we show that this problem, called Soft Tree Containment, is NP-hard, even if N is a binary, multi-labeled tree in which each taxon occurs at most thrice. On the other hand, we reduce the case that each label occurs at most twice to solving a 2-SAT instance of size O(|T|^3). This implies NP-hardness and polynomial-time solvability on reticulation-visible networks in which the maximum in-degree is bounded by three and two, respectively.
- Published
- 2018
- Full Text
- View/download PDF
76. Inductive k-independent graphs and c-colorable subgraphs in scheduling: a review.
- Author
-
Bentert, Matthias, van Bevern, René, and Niedermeier, Rolf
- Subjects
INDEPENDENT sets ,POLYNOMIAL time algorithms ,LINEAR time invariant systems ,APPROXIMATION algorithms ,STEEL manufacture - Abstract
Inductive k-independent graphs generalize chordal graphs and have recently been advocated in the context of interference-avoiding wireless communication scheduling. The NP-hard problem of finding maximum-weight induced c-colorable subgraphs, which is a generalization of finding maximum independent sets, naturally occurs when selecting c sets of pairwise non-conflicting jobs (modeled as graph vertices). We investigate the parameterized complexity of this problem on inductive k-independent graphs. We show that the MAXIMUM INDEPENDENT SET problem is W[1]-hard even on 2-simplicial 3-minoes—a subclass of inductive 2-independent graphs. In contrast, we prove that the more general MAX-WEIGHTc-COLORABLE SUBGRAPH problem is fixed-parameter tractable on edge-wise unions of cluster and chordal graphs, which are 2-simplicial. In both cases, the parameter is the solution size. Aside from this, we survey other graph classes between inductive 1-independent and inductive 2-independent graphs with applications in scheduling. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.