51. Limbic system structure volumes and associated neurocognitive functioning in former NFL players.
- Author
-
Lepage C, Muehlmann M, Tripodis Y, Hufschmidt J, Stamm J, Green K, Wrobel P, Schultz V, Weir I, Alosco ML, Baugh CM, Fritts NG, Martin BM, Chaisson C, Coleman MJ, Lin AP, Pasternak O, Makris N, Stern RA, Shenton ME, and Koerte IK
- Subjects
- Amygdala pathology, Athletes, Brain Concussion complications, Chronic Traumatic Encephalopathy etiology, Cognition Disorders diagnosis, Football injuries, Football physiology, Gyrus Cinguli pathology, Hippocampus pathology, Humans, Magnetic Resonance Imaging methods, Male, Middle Aged, Neurodegenerative Diseases physiopathology, Chronic Traumatic Encephalopathy physiopathology, Limbic System physiology
- Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.
- Published
- 2019
- Full Text
- View/download PDF