61 results on '"Asayesh, Farnaz"'
Search Results
52. Dopamine Pathway and Parkinson's Risk Variants Are Associated with Levodopa-Induced Dyskinesia.
- Author
-
Sosero YL, Bandres-Ciga S, Ferwerda B, Tocino MTP, Belloso DR, Gómez-Garre P, Faouzi J, Taba P, Pavelka L, Marques TM, Gomes CPC, Kolodkin A, May P, Milanowski LM, Wszolek ZK, Uitti RJ, Heutink P, van Hilten JJ, Simon DK, Eberly S, Alvarez I, Krohn L, Yu E, Freeman K, Rudakou U, Ruskey JA, Asayesh F, Menéndez-Gonzàlez M, Pastor P, Ross OA, Krüger R, Corvol JC, Koks S, Mir P, De Bie RMA, Iwaki H, and Gan-Or Z
- Subjects
- Humans, Male, Female, Aged, Middle Aged, Dopamine metabolism, Antiparkinson Agents adverse effects, Genetic Predisposition to Disease genetics, Polymorphism, Single Nucleotide genetics, Levodopa adverse effects, Parkinson Disease genetics, Parkinson Disease drug therapy, Dyskinesia, Drug-Induced genetics, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 genetics, Glucosylceramidase genetics, Genome-Wide Association Study
- Abstract
Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2., Objectives: Our goal was to investigate the effects of genetic variants on risk and time to LID., Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID., Results: We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (OR
fourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147)., Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society., (© 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)- Published
- 2024
- Full Text
- View/download PDF
53. Genome-wide association study of glucocerebrosidase activity modifiers.
- Author
-
Somerville EN, Krohn L, Senkevich K, Yu E, Ahmad J, Asayesh F, Ruskey JA, Speigelman D, Fahn S, Waters C, Sardi SP, Alcalay RN, and Gan-Or Z
- Abstract
One of the most common genetic risk factors for Parkinson's disease (PD) are variants in GBA1 , which encodes the lysosomal enzyme glucocerebrosidase (GCase). GCase deficiency has been associated with an increased PD risk, but not all individuals with low GCase activity are carriers of GBA1 mutations, suggesting other factors may be acting as modifiers. We aimed to discover common variants associated with GCase activity, as well as replicate previously reported associations, by performing a genome-wide association study using two independent cohorts: a Columbia University cohort consisting of 697 PD cases and 347 controls and the Parkinson's Progression Markers Initiative (PPMI) cohort consisting of 357 PD cases and 163 controls. As expected, GBA1 variants have the strongest association with decreased activity, led by p.N370S (beta = -4.36, se = 0.32, p = 5.05e-43). We also identify a novel association in the GAA locus (encoding for acid alpha-glucosidase, beta = -0.96, se = 0.17, p = 5.23e-09) that may be the result of an interaction between GCase and acid alpha-glucosidase based on various interaction analyses. Lastly, we show that several PD-risk loci are potentially associated with GCase activity. Further research will be needed to replicate and validate our findings and to uncover the functional connection between acid alpha-glucosidase and GCase., Competing Interests: 5.2Z.G.O received consultancy fees from Lysosomal Therapeutics Inc. (LTI), Idorsia, Prevail Therapeutics, Ono Therapeutics, Denali, Handl Therapeutics, Neuron23, Bial Biotech, Bial, UCB, Capsida, Vanqua bio, Congruence Therapeutics, Takeda, Jazz Guidepoint, Lighthouse and Deerfield.
- Published
- 2024
- Full Text
- View/download PDF
54. Are rare heterozygous SYNJ1 variants associated with Parkinson's disease?
- Author
-
Senkevich K, Parlar SC, Chantereault C, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, and Gan-Or Z
- Abstract
Previous studies have suggested that rare biallelic SYNJ1 mutations may cause autosomal recessive parkinsonism and Parkinson's disease (PD). Our study explored the impact of rare SYNJ1 variants in non-familial settings, including 8,165 PD cases, 818 early-onset PD (EOPD, <50 years) and 70,363 controls. Burden meta-analysis using optimized sequence Kernel association test (SKAT-O) revealed an association between rare nonsynonymous variants in the Sac1 SYNJ1 domain and PD (P
fdr =0.040). Additionally, a meta-analysis focusing on patients with EOPD demonstrated an association between all rare SYNJ1 variants and PD (Pfdr =0.029). Rare SYNJ1 variants may be associated with sporadic PD, and more specifically with EOPD., Competing Interests: Competing interests ZGO received consultancy fees from Lysosomal Therapeutics Inc. (LTI), Idorsia, Prevail Therapeutics, Ono Therapeutics, Denali, Handl Therapeutics, Neuron23, Bial Biotech, Bial, UCB, Capsida, Vanqua bio, Congruence Therapeutics, Takeda, Jazz Pharmaceuticals, Guidepoint, Lighthouse and Deerfield.- Published
- 2024
- Full Text
- View/download PDF
55. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons.
- Author
-
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del-Cid Pellitero E, Chen CX, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupre N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, HassinBaer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, and Fon EA
- Abstract
Background: Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified., Methods: Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils., Results: We first identified specific non-coding variants in CTSB that drive the association with PD and are linked to changes in brain CTSB expression levels. Using iPSC-derived dopaminergic neurons we then find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1 ) activity, and leads to an accumulation of lysosomal content. Moreover, in cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. Similarly, in midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition or knockout potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein., Conclusions: The results of our genetic and functional studies indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein., Competing Interests: Competing Interests The authors declare no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
56. The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons.
- Author
-
Jones-Tabah J, He K, Senkevich K, Karpilovsky N, Deyab G, Cousineau Y, Nikanorova D, Goldsmith T, Del Cid Pellitero E, Chen CX, Luo W, You Z, Abdian N, Pietrantonio I, Goiran T, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Waters C, Monchi O, Dauvilliers Y, Dupré N, Miliukhina I, Timofeeva A, Emelyanov A, Pchelina S, Greenbaum L, Hassin-Baer S, Alcalay RN, Milnerwood A, Durcan TM, Gan-Or Z, and Fon EA
- Abstract
Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated with increased risk of Parkinson's disease (PD). However, neither the specific CTSB variants driving these associations nor the functional pathways that link catB to PD pathogenesis have been characterized. CatB activity contributes to lysosomal protein degradation and regulates signaling processes involved in autophagy and lysosome biogenesis. Previous in vitro studies have found that catB can cleave monomeric and fibrillar alpha-synuclein, a key protein involved in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus, catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by generating aggregation-prone truncations. Therefore, the mechanisms linking catB to PD pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association between common and rare CTSB variants and risk of PD. We then used genetic and pharmacological approaches to manipulate catB expression and function in cell lines and induced pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces glucocerebrosidase (encoded by GBA1 ) activity, and leads to an accumulation of lysosomal content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition potentiates the formation of inclusions which stain positively for phosphorylated alpha-synuclein. These results indicate that the reduction of catB function negatively impacts lysosomal pathways associated with PD pathogenesis, while conversely catB activation could promote the clearance of pathogenic alpha-synuclein.
- Published
- 2023
- Full Text
- View/download PDF
57. Dopamine pathway and Parkinson's risk variants are associated with levodopa-induced dyskinesia.
- Author
-
Sosero YL, Bandres-Ciga S, Ferwerda B, Tocino MTP, Belloso DR, Gómez-Garre P, Faouzi J, Taba P, Pavelka L, Marques TM, Gomes CPC, Kolodkin A, May P, Milanowski LM, Wszolek ZK, Uitti RJ, Heutink P, van Hilten JJ, Simon DK, Eberly S, Alvarez I, Krohn L, Yu E, Freeman K, Rudakou U, Ruskey JA, Asayesh F, Menéndez-Gonzàlez M, Pastor P, Ross OA, Krüger R, Corvol JC, Koks S, Mir P, De Bie RMA, Iwaki H, and Gan-Or Z
- Abstract
Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2 ., Objectives: To investigate the effects of genetic variants on risk and time to LID., Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID., Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (OR
fourth_quartile =1.27, 95% CI=1.03-1.56, p =0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile =1.38, 95% CI=1.07-1.79, p =0.0128; HRfourth_quartile =1.38, 95% CI=1.06-1.78, p =0.0147)., Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care., Competing Interests: ZGO has received consulting fees from Lysosomal Therapeutics Inc., Idorsia, Prevail Therapeutics, Denali, Ono Therapeutics, Neuron23, Handl Therapeutics, UBC, Bial Biotech Inc., Bial, Deerfield, Guidepoint, Lighthouse and VanquaBio. None of these companies were involved in any parts of preparing, drafting and publishing this study. ZKW is partially supported by the NIH/NIA and NIH/NINDS (1U19AG063911, FAIN: U19AG063911), Mayo Clinic Center for Regenerative Medicine, the gifts from the Donald G. and Jodi P. Heeringa Family, the Haworth Family Professorship in Neurodegenerative Diseases fund, and The Albertson Parkinson's Research Foundation. He serves as PI or Co-PI on Biohaven Pharmaceuticals, Inc. (BHV4157-206) and Vigil Neuroscience, Inc. (VGL101-01.002, VGL101-01.201, PET tracer development protocol, Cfthsf1r biomarker and repository project, and ultra-high field MRI in the diagnosis and management of CSF1R-related adult-onset leukoencephalopathy with axonal spheroids and pigmented glia) projects/grants. He serves as Co-PI of the Mayo Clinic APDA Center for Advanced Research and as an external advisory board member for the Vigil Neuroscience, Inc., and as a consultant on neurodegenerative medical research for Eli Lilli & Company.- Published
- 2023
- Full Text
- View/download PDF
58. GALC variants affect galactosylceramidase enzymatic activity and risk of Parkinson's disease.
- Author
-
Senkevich K, Zorca CE, Dworkind A, Rudakou U, Somerville E, Yu E, Ermolaev A, Nikanorova D, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Grenn FP, Chiang MSR, Sardi SP, Vanderperre B, Blauwendraat C, Trempe JF, Fon EA, Durcan TM, Alcalay RN, and Gan-Or Z
- Subjects
- Humans, alpha-Synuclein metabolism, Galactosylceramidase genetics, Galactosylceramidase metabolism, Glucosylceramidase genetics, Genome-Wide Association Study, Mutation, Hydrolases genetics, Parkinson Disease metabolism
- Abstract
The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
59. HLA in isolated REM sleep behavior disorder and Lewy body dementia.
- Author
-
Yu E, Krohn L, Ruskey JA, Asayesh F, Spiegelman D, Shah Z, Chia R, Arnulf I, Hu MTM, Montplaisir JY, Gagnon JF, Desautels A, Dauvilliers Y, Gigli GL, Valente M, Janes F, Bernardini A, Högl B, Stefani A, Ibrahim A, Heidbreder A, Sonka K, Dusek P, Kemlink D, Oertel W, Janzen A, Plazzi G, Antelmi E, Figorilli M, Puligheddu M, Mollenhauer B, Trenkwalder C, Sixel-Döring F, De Cock VC, Ferini-Strambi L, Dijkstra F, Viaene M, Abril B, Boeve BF, Rouleau GA, Postuma RB, Scholz SW, and Gan-Or Z
- Abstract
Background and Objectives: Isolated/idiopathic REM sleep behavior disorder (iRBD) and Lewy body dementia (LBD) are synucleinopathies that have partial genetic overlap with Parkinson's disease (PD). Previous studies have shown that neuroinflammation plays a substantial role in these disorders. In PD, specific residues of the human leukocyte antigen ( HLA ) were suggested to be associated with a protective effect. This study examined whether the HLA locus plays a similar role in iRBD, LBD and PD., Methods: We performed HLA imputation on iRBD genotyping data (1,072 patients and 9,505 controls) and LBD whole-genome sequencing (2,604 patients and 4,032 controls) using the multi-ethnic HLA reference panel v2 from the Michigan Imputation Server. Using logistic regression, we tested the association of HLA alleles, amino acids and haplotypes with disease susceptibility. We included age, sex and the top 10 principal components as covariates. We also performed an omnibus test to examine which HLA residue positions explain the most variance., Results: In iRBD, HLA-DRB1 *11:01 was the only allele passing FDR correction (OR=1.57, 95% CI=1.27-1.93, p =2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR=1.26, 95%CI=1.12-1.41, p =8.76e-05), 70Q (OR=0.81, 95% CI=0.72-0.91, p =3.65e-04) and 71R (OR=1.21, 95% CI=1.08-1.35, p =1.35e-03). In HLA-DRB1 , position 71 ( p
omnibus =0.00102) and 70 ( pomnibus =0.00125) were associated with iRBD. We found no association in LBD., Discussion: This study identified an association between HLA-DRB1 11:01 and iRBD, distinct from the previously reported association in PD. Therefore, the HLA locus may play different roles across synucleinopathies. Additional studies are required better to understand HLA's role in iRBD and LBD.- Published
- 2023
- Full Text
- View/download PDF
60. Association of rare variants in ARSA with Parkinson's disease.
- Author
-
Senkevich K, Beletskaia M, Dworkind A, Yu E, Ahmad J, Ruskey JA, Asayesh F, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Nagornov I, Tyurin A, Miliukhina I, Timofeeva A, Emelyanov A, Zakharova E, Alcalay RN, Pchelina S, and Gan-Or Z
- Abstract
Background: Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA , which encodes for the enzyme arylsulfatase A, remains controversial., Objectives: To evaluate the association between rare ARSA variants and PD., Methods: To study possible association of rare variants (minor allele frequency<0.01) in ARSA with PD, we performed burden analyses in six independent cohorts with a total of 5,801 PD patients and 20,475 controls, using optimized sequence Kernel association test (SKAT-O), followed by a meta-analysis., Results: We found evidence for an association between functional ARSA variants and PD in four independent cohorts (P≤0.05 in each) and in the meta-analysis (P=0.042). We also found an association between loss-of-function variants and PD in the UKBB cohort (P=0.005) and in the meta-analysis (P=0.049). However, despite replicating in four independent cohorts, these results should be interpreted with caution as no association survived correction for multiple comparisons. Additionally, we describe two families with potential co-segregation of the ARSA variant p.E384K and PD., Conclusions: Rare functional and loss-of-function ARSA variants may be associated with PD. Further replication in large case-control cohorts and in familial studies is required to confirm these associations.
- Published
- 2023
- Full Text
- View/download PDF
61. Targeted sequencing of Parkinson's disease loci genes highlights SYT11, FGF20 and other associations.
- Author
-
Rudakou U, Yu E, Krohn L, Ruskey JA, Asayesh F, Dauvilliers Y, Spiegelman D, Greenbaum L, Fahn S, Waters CH, Dupré N, Rouleau GA, Hassin-Baer S, Fon EA, Alcalay RN, and Gan-Or Z
- Subjects
- Adult, Aged, Female, Genetic Predisposition to Disease, Humans, Male, Middle Aged, Mutation, Polymorphism, Single Nucleotide, Fibroblast Growth Factors genetics, Parkinson Disease genetics, Synaptotagmins genetics
- Abstract
Genome-wide association studies (GWAS) have identified numerous loci associated with Parkinson's disease. The specific genes and variants that drive the associations within the vast majority of these loci are unknown. We aimed to perform a comprehensive analysis of selected genes to determine the potential role of rare and common genetic variants within these loci. We fully sequenced 32 genes from 25 loci previously associated with Parkinson's disease in 2657 patients and 3647 controls from three cohorts. Capture was done using molecular inversion probes targeting the exons, exon-intron boundaries and untranslated regions (UTRs) of the genes of interest, followed by sequencing. Quality control was performed to include only high-quality variants. We examined the role of rare variants (minor allele frequency < 0.01) using optimized sequence Kernel association tests. The association of common variants was estimated using regression models adjusted for age, sex and ethnicity as required in each cohort, followed by a meta-analysis. After Bonferroni correction, we identified a burden of rare variants in SYT11, FGF20 and GCH1 associated with Parkinson's disease. Nominal associations were identified in 21 additional genes. Previous reports suggested that the SYT11 GWAS association is driven by variants in the nearby GBA gene. However, the association of SYT11 was mainly driven by a rare 3' UTR variant (rs945006601) and was independent of GBA variants (P = 5.23 × 10-5 after exclusion of all GBA variant carriers). The association of FGF20 was driven by a rare 5' UTR variant (rs1034608171) located in the promoter region. The previously reported association of GCH1 with Parkinson's disease is driven by rare non-synonymous variants, some of which are known to cause dopamine-responsive dystonia. We also identified two LRRK2 variants, p.Arg793Met and p.Gln1353Lys, in 10 and eight controls, respectively, but not in patients. We identified common variants associated with Parkinson's disease in MAPT, TMEM175, BST1, SNCA and GPNMB, which are all in strong linkage disequilibrium with known GWAS hits in their respective loci. A common coding PM20D1 variant, p.Ile149Val, was nominally associated with reduced risk of Parkinson's disease (odds ratio 0.73, 95% confidence interval 0.60-0.89, P = 1.161 × 10-3). This variant is not in linkage disequilibrium with the top GWAS hits within this locus and may represent a novel association. These results further demonstrate the importance of fine mapping of GWAS loci, and suggest that SYT11, FGF20, and potentially PM20D1, BST1 and GPNMB should be considered for future studies as possible Parkinson's disease-related genes., (© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.