302,225 results on '"Arnaud, A"'
Search Results
52. Terrestrial Very-Long-Baseline Atom Interferometry: Summary of the Second Workshop
- Author
-
Abdalla, Adam, Abe, Mahiro, Abend, Sven, Abidi, Mouine, Aidelsburger, Monika, Alibabaei, Ashkan, Allard, Baptiste, Antoniadis, John, Arduini, Gianluigi, Augst, Nadja, Balamatsias, Philippos, Balaz, Antun, Banks, Hannah, Barcklay, Rachel L., Barone, Michele, Barsanti, Michele, Bason, Mark G., Bassi, Angelo, Bayle, Jean-Baptiste, Baynham, Charles F. A., Beaufils, Quentin, Beldjoudi, Slyan, Belic, Aleksandar, Bennetts, Shayne, Bernabeu, Jose, Bertoldi, Andrea, Bigard, Clara, Bigelow, N. P., Bingham, Robert, Blas, Diego, Bobrick, Alexey, Boehringer, Samuel, Bogojevic, Aleksandar, Bongs, Kai, Bortoletto, Daniela, Bouyer, Philippe, Brand, Christian, Buchmueller, Oliver, Buica, Gabriela, Calatroni, Sergio, Calmels, Lo, Canizares, Priscilla, Canuel, Benjamin, Caramete, Ana, Caramete, Laurentiu-Ioan, Carlesso, Matteo, Carlton, John, Carman, Samuel P., Carroll, Andrew, Casariego, Mateo, Chairetis, Minoas, Charmandaris, Vassilis, Chauhan, Upasna, Chen, Jiajun, Luisa, Maria, Chiofalo, Ciampini, Donatella, Cimbri, Alessia, Clad, Pierre, Coleman, Jonathon, Constantin, Florin Lucian, Contaldi, Carlo R., Corgier, Robin, Dash, Bineet, Davies, G. J., de Rham, Claudia, De Roeck, Albert, Derr, Daniel, Dey, Soumyodeep, Di Pumpo, Fabio, Djordjevic, Goran S., Doebrich, Babette, Dornan, Peter, Doser, Michael, Drougakis, Giannis, Dunningham, Jacob, Duspayev, Alisher, Easo, Sajan, Eby, Joshua, Efremov, Maxim, Elertas, Gedminas, Ellis, John, Entin, Nicholas, Fairhurst, Stephen, Fani, Mattia, Fassi, Farida, Fayet, Pierre, Felea, Daniel, Feng, Jie, Flack, Robert, Foot, Chris, Freegarde, Tim, Fuchs, Elina, Gaaloul, Naceur, Gao, Dongfeng, Gardner, Susan, Garraway, Barry M., Alzar, Carlos L. Garrido, Gauguet, Alexandre, Giese, Enno, Gill, Patrick, Giudice, Gian F., Glasbrenner, Eric P., Glick, Jonah, Graham, Peter W., Granados, Eduardo, Griffin, Paul F., Gue, Jordan, Guellati-Khelifa, Saida, Gupta, Subhadeep, Gupta, Vishu, Hackermueller, Lucia, Haehnelt, Martin, Hakulinen, Timo, Hammerer, Klemens, Hanimeli, Ekim T., Harte, Tiffany, Hartmann, Sabrina, Hawkins, Leonie, Hees, Aurelien, Herbst, Alexander, Hird, Thomas M., Hobson, Richard, Hogan, Jason, Holst, Bodil, Holynski, Michael, Hosten, Onur, Hsu, Chung Chuan, Huang, Wayne Cheng-Wei, Hughes, Kenneth M., Hussain, Kamran, Huetsi, Gert, Iovino, Antonio, Isfan, Maria-Catalina, Janson, Gregor, Jeglic, Peter, Jetzer, Philippe, Jiang, Yijun, Juzeliunas, Gediminas, Kaenders, Wilhelm, Kalliokoski, Matti, Kehagias, Alex, Kilian, Eva, Klempt, Carsten, Knight, Peter, Koley, Soumen, Konrad, Bernd, Kovachy, Tim, Krutzik, Markus, Kumar, Mukesh, Kumar, Pradeep, Labiad, Hamza, Lan, Shau-Yu, Landragin, Arnaud, Landsberg, Greg, Langlois, Mehdi, Lanigan, Bryony, Poncin-Lafitte, Christophe Le, Lellouch, Samuel, Leone, Bruno, Lewicki, Marek, Lien, Yu-Hung, Lombriser, Lucas, Asamar, Elias Lopez, Lopez-Gonzalez, J. Luis, Lowe, Adam, Lu, Chen, Luciano, Giuseppe Gaetano, Lundblad, Nathan, Monjaraz, Cristian de J. Lpez, Mackoit-Sinkeviien, Maena, Maggiore, Michele, Majumdar, Anirban, Makris, Konstantinos, Maleknejad, Azadeh, Marchant, Anna L., Mariotti, Agnese, Markou, Christos, Matthews, Barnaby, Mazumdar, Anupam, McCabe, Christopher, Meister, Matthias, Mentasti, Giorgio, Menu, Jonathan, Messineo, Giuseppe, Meyer-Hoppe, Bernd, Micalizio, Salvatore, Migliaccio, Federica, Millington, Peter, Milosevic, Milan, Mishra, Abhay, Mitchell, Jeremiah, Morley, Gavin W., Mouelle, Noam, Mueller, Juergen, Newbold, David, Ni, Wei-Tou, Niehof, Christian, Noller, Johannes, Odzak, Senad, Oi, Daniel K. L., Oikonomou, Andreas, Omar, Yasser, Overstreet, Chris, Pahl, Julia, Paling, Sean, Pan, Zhongyin, Pappas, George, Pareek, Vinay, Pasatembou, Elizabeth, Paternostro, Mauro, Pathak, Vishal K., Pelucchi, Emanuele, Santos, Franck Pereira dos, Peters, Achim, Pichery, Annie, Pikovski, Igor, Pilaftsis, Apostolos, Pislan, Florentina-Crenguta, Plunkett, Robert, Poggiani, Rosa, Prevedelli, Marco, Veettil, Vishnupriya Puthiya, Rafelski, Johann, Raidal, Juhan, Raidal, Martti, Rasel, Ernst Maria, Renaux-Petel, Sebastien, Richaud, Andrea, Rivero-Antunez, Pedro, Rodzinka, Tangui, Roura, Albert, Rudolph, Jan, Sabulsky, Dylan, Safronova, Marianna S., Sakellariadou, Mairi, Salvi, Leonardo, Sameed, Muhammed, Sarkar, Sumit, Schach, Patrik, Schaeffer, Stefan Alaric, Schelfhout, Jesse, Schilling, Manuel, Schkolnik, Vladimir, Schleich, Wolfgang P., Schlippert, Dennis, Schneider, Ulrich, Schreck, Florian, Schwartzman, Ariel, Schwersenz, Nico, Sergijenko, Olga, Sfar, Haifa Rejeb, Shao, Lijing, Shipsey, Ian, Shu, Jing, Singh, Yeshpal, Sopuerta, Carlos F., Sorba, Marianna, Sorrentino, Fiodor, Spallicci, Alessandro D. A. M, Stefanescu, Petruta, Stergioulas, Nikolaos, Stoerk, Daniel, Stroehle, Jannik, Sunilkumar, Hrudya Thaivalappil, Tam, Zoie, Tandon, Dhruv, Tang, Yijun, Tell, Dorothee, Tempere, Jacques, Temples, Dylan J., Thampy, Rohit P, Tietje, Ingmari C., Tino, Guglielmo M., Tinsley, Jonathan N., Mircea, Ovidiu Tintareanu, Tkalec, Kimberly, Tolley, Andrew J., Tornatore, Vincenza, Torres-Orjuela, Alejandro, Treutlein, Philipp, Trombettoni, Andrea, Ufrecht, Christian, Urrutia, Juan, Valenzuela, Tristan, Valerio, Linda R., van der Grinten, Maurits, Vaskonen, Ville, Vazquez-Aceves, Veronica, Veermae, Hardi, Vetrano, Flavio, Vitanov, Nikolay V., von Klitzing, Wolf, Wald, Sebastian, Walker, Thomas, Walser, Reinhold, Wang, Jin, Wang, Yan, Weidner, C. A., Wenzlawski, Andr, Werner, Michael, Woerner, Lisa, Yahia, Mohamed E., Yazgan, Efe, Cruzeiro, Emmanuel Zambrini, Zarei, M., Zhan, Mingsheng, Zhang, Shengnan, Zhou, Lin, and Zupanic, Erik
- Subjects
High Energy Physics - Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,Physics - Atomic Physics - Abstract
This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024, building on the initial discussions during the inaugural workshop held at CERN in March 2023. Like the summary of the first workshop, this document records a critical milestone for the international atom interferometry community. It documents our concerted efforts to evaluate progress, address emerging challenges, and refine strategic directions for future large-scale atom interferometry projects. Our commitment to collaboration is manifested by the integration of diverse expertise and the coordination of international resources, all aimed at advancing the frontiers of atom interferometry physics and technology, as set out in a Memorandum of Understanding signed by over 50 institutions., Comment: Summary of the second Terrestrial Very-Long-Baseline Atom Interferometry Workshop held at Imperial College London: https://indico.cern.ch/event/1369392/
- Published
- 2024
53. Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation
- Author
-
Sgouritsa, Eleni, Aglietti, Virginia, Teh, Yee Whye, Doucet, Arnaud, Gretton, Arthur, and Chiappa, Silvia
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
The reasoning abilities of Large Language Models (LLMs) are attracting increasing attention. In this work, we focus on causal reasoning and address the task of establishing causal relationships based on correlation information, a highly challenging problem on which several LLMs have shown poor performance. We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions, with each subquestion corresponding to one step of a formal causal discovery algorithm, the PC algorithm. The proposed prompting strategy, PC-SubQ, guides the LLM to follow these algorithmic steps, by sequentially prompting it with one subquestion at a time, augmenting the next subquestion's prompt with the answer to the previous one(s). We evaluate our approach on an existing causal benchmark, Corr2Cause: our experiments indicate a performance improvement across five LLMs when comparing PC-SubQ to baseline prompting strategies. Results are robust to causal query perturbations, when modifying the variable names or paraphrasing the expressions.
- Published
- 2024
54. Tilting representations of finite groups of Lie type
- Author
-
Eteve, Arnaud
- Subjects
Mathematics - Representation Theory - Abstract
Let $\mathbf{G}$ be a connected reductive group over a finite field $\mathbb{F}_q$ of characteristic $p > 0$. In this paper, we study a category which we call Deligne--Lusztig category $\mathcal{O}$ and whose definition is similar to category $\mathcal{O}$. We use this to construct a collection of representations of $\mathbf{G}(\mathbb{F}_q)$ which we call the tilting representations. They form a generating collection of integral projective representations of $\mathbf{G}(\mathbb{F}_q)$. Finally we compute the character of these representations and relate their expression to previous calculations of Lusztig and we then use this to establish a conjecture of Dudas--Malle., Comment: Comments welcome !
- Published
- 2024
55. Free monodromic Hecke categories and their categorical traces
- Author
-
Eteve, Arnaud
- Subjects
Mathematics - Representation Theory - Abstract
The goal of this paper is to give a new construction of the free monodromic categories defined by Yun. We then use this formalism to give simpler constructions of the free monodromic Hecke categories and then compute the trace of Frobenius and of the identity on them. As a first application of the formalism, we produce new proofs of key theorems in Deligne--Lusztig theory., Comment: Comments welcome !
- Published
- 2024
56. An Efficient Surrogate Model of Secondary Electron Formation and Evolution
- Author
-
McDevitt, Christopher J., Arnaud, Jonathan, and Tang, Xian-Zhu
- Subjects
Physics - Plasma Physics - Abstract
This work extends the adjoint-deep learning framework for runaway electron (RE) evolution developed in Ref. [C. McDevitt et al., A physics-constrained deep learning treatment of runaway electron dynamics, Submitted to Physics of Plasmas (2024)] to account for large-angle collisions. By incorporating large-angle collisions the framework allows the avalanche of REs to be captured, an essential component to RE dynamics. This extension is accomplished by using a Rosenbluth-Putvinski approximation to estimate the distribution of secondary electrons generated by large-angle collisions. By evolving both the primary and multiple generations of secondary electrons, the present formulation is able to capture both the detailed temporal evolution of a RE population beginning from an arbitrary initial momentum space distribution, along with providing approximations to the saturated growth and decay rates of the RE population. Predictions of the adjoint-deep learning framework are verified against a traditional RE solver, with good agreement present across a broad range of parameters.
- Published
- 2024
57. A Physics-Constrained Deep Learning Treatment of Runaway Electron Dynamics
- Author
-
McDevitt, Christopher J., Arnaud, Jonathan, and Tang, Xian-Zhu
- Subjects
Physics - Plasma Physics - Abstract
An adjoint formulation leveraging a physics-informed neural network (PINN) is employed to advance the density moment of a runaway electron (RE) distribution forward in time. A distinguishing feature of this approach is that once the adjoint problem is solved, its solution can be used to project the RE density forward in time for an arbitrary initial momentum space distribution of REs. Furthermore, by employing a PINN, a parametric solution to the adjoint problem can be learned. Thus, once trained, this adjoint-deep learning framework is able to efficiently project the RE density forward in time across various plasma conditions while still including a fully kinetic description of RE dynamics. As an example application, the temporal evolution of the density of primary electrons is studied, with particular emphasis on evaluating the decay of a RE population when below threshold. Predictions from the adjoint-deep learning framework are found to be in good agreement with a traditional relativistic electron Fokker-Planck solver, for several distinct initial conditions, and across an array of physics parameters. Once trained the PINN thus provides a means of generating RE density time histories with exceptionally low online execution time.
- Published
- 2024
58. Conjecture: the set of prime numbers is supernatural
- Author
-
Mayeux, Arnaud
- Subjects
Mathematics - General Mathematics - Abstract
Prime numbers are fascinating by the way they appear in the set of natural numbers. Despite several results enlighting us about their repartition, the set of prime numbers is often informally qualified as misterious. In the present paper, we introduce a formalism allowing to state a formal conjecture: the set of prime numbers is supernatural. Our conjecture has no analog in the existing literature. We explain that this conjecture is expected to be a hard challenge for any kind of intelligence. However it is really natural and even seems very close to be canonical., Comment: new version of https://hal.science/hal-02564341
- Published
- 2024
59. Isotopic Transparency in Central Xe+Sn Collisions at 100 MeV/nucleon
- Author
-
Fèvre, Arnaud Le, Chbihi, Abdelouahad, Fable, Quentin, Génard, Tom, Łukasik, Jerzy, Trautmann, Wolfgang, Turzó, Ketel, Bougault, Rémi, Hudan, Sylvie, Lopez, Olivier, Müller, Walter F. J., Schwarz, Carsten, Sfienti, Concettina, Verde, Giuseppe, Vigilante, Mariano, and Zwiegliński, Bogdan
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
A new method, based on comparing isotopic yield ratios measured at forward and sideward polar angles and on cross-bombarding heavy nuclei with different neutron-to-proton ratios, is used to quantify the stopping power in heavy-ion collisions. For central collisions of isotopically separated $^{124,129}$Xe+$^{112,124}$Sn at 100~MeV/nucleon bombarding energy, measured with the 4$\pi$ multidetector INDRA at GSI, a moderate transparency is deduced for hydrogen isotopes, whereas for heavier fragmentation products with atomic number $Z \ge 3$ a high transparency exceeding 50\% is observed. An anomalously large transparency is found for alpha particles, and possible explanations are presented., Comment: 15 pages, 5 figures
- Published
- 2024
60. Radial evolution of a density structure within a solar wind magnetic sector boundary
- Author
-
Berriot, Etienne, Démoulin, Pascal, Alexandrova, Olga, Zaslavsky, Arnaud, Maksimovic, Milan, and Nicolaou, Georgios
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
This study focuses on a radial alignment between Parker Solar Probe (PSP) and Solar Orbiter (SolO) on the 29$^{\text{th}}$ of April 2021 (during a solar minimum), when the two spacecraft were respectively located at $\sim 0.075$ and $\sim 0.9$~au from the Sun. A previous study of this alignment allowed the identification of the same density enhancement (with a time scale of $\sim$1.5~h), and substructures ($\sim$20-30~min timescale), passing first by PSP, and then SolO after a $\sim 138$~h propagation time in the inner heliosphere. We show here that this structure belongs to the large scale heliospheric magnetic sector boundary. In this region, the density is dominated by radial gradients, whereas the magnetic field reversal is consistent with longitudinal gradients in the Carrington reference frame. We estimate the density structure radial size to remain of the order L$_R \sim 10^6$~km, while its longitudinal and latitudinal sizes, are estimated to expand from L$_{\varphi, \theta} \sim 10^4$-$10^5$~km in the high solar corona, to L$_{\varphi, \theta} \sim 10^5$-$10^6$~km at PSP, and L$_{\varphi, \theta} \sim 10^6$-$10^7$~km at SolO. This implies a strong evolution of the structure's aspect ratio during the propagation, due to the plasma's nearly spherical expansion. The structure's shape is therefore inferred to evolve from elongated in the radial direction at $\sim$2-3 solar radii (high corona), to sizes of nearly the same order in all directions at PSP, and then becoming elongated in the directions transverse to the radial at SolO. Measurements are not concordant with local reconnection of open solar wind field lines, so we propose that the structure has been generated through interchange reconnection near the tip of a coronal streamer.
- Published
- 2024
61. Moduli of representations of Leavitt path algebras
- Author
-
Brothier, Arnaud and Wijesena, Dilshan
- Subjects
Mathematics - Representation Theory ,Mathematics - Operator Algebras ,Mathematics - Rings and Algebras - Abstract
We transpose Jones' technology and the authors' C*-algebraic techniques to study representations of the Leavitt path algebra L (over an arbitrary row-finite graph) by using its quiver algebra A. We establish an equivalence of categories between certain full subcategories of Rep(A) and Rep(L) that preserves irreducibility and indecomposability. We define a dimension function on Rep(L), and for each finite dimension we provide a moduli space for the irreducible classes by transporting structures of King and Nakajima on quiver representations. Our techniques are both explicit and functorial., Comment: 28 pages, 4 diagrams
- Published
- 2024
62. Nonparametric estimation of the stationary density for Hawkes-diffusion systems with known and unknown intensity
- Author
-
Amorino, Chiara, Dion-Blanc, Charlotte, Gloter, Arnaud, and Lemler, Sarah
- Subjects
Mathematics - Statistics Theory - Abstract
We investigate the nonparametric estimation problem of the density $\pi$, representing the stationary distribution of a two-dimensional system $\left(Z_t\right)_{t \in[0, T]}=\left(X_t, \lambda_t\right)_{t \in[0, T]}$. In this system, $X$ is a Hawkes-diffusion process, and $\lambda$ denotes the stochastic intensity of the Hawkes process driving the jumps of $X$. Based on the continuous observation of a path of $(X_t)$ over $[0, T]$, and initially assuming that $\lambda$ is known, we establish the convergence rate of a kernel estimator $\widehat\pi\left(x^*, y^*\right)$ of $\pi\left(x^*,y^*\right)$ as $T \rightarrow \infty$. Interestingly, this rate depends on the value of $y^*$ influenced by the baseline parameter of the Hawkes intensity process. From the rate of convergence of $\widehat\pi\left(x^*,y^*\right)$, we derive the rate of convergence for an estimator of the invariant density $\lambda$. Subsequently, we extend the study to the case where $\lambda$ is unknown, plugging an estimator of $\lambda$ in the kernel estimator and deducing new rates of convergence for the obtained estimator. The proofs establishing these convergence rates rely on probabilistic results that may hold independent interest. We introduce a Girsanov change of measure to transform the Hawkes process with intensity $\lambda$ into a Poisson process with constant intensity. To achieve this, we extend a bound for the exponential moments for the Hawkes process, originally established in the stationary case, to the non-stationary case. Lastly, we conduct a numerical study to illustrate the obtained rates of convergence of our estimators.
- Published
- 2024
63. Score-Optimal Diffusion Schedules
- Author
-
Williams, Christopher, Campbell, Andrew, Doucet, Arnaud, and Syed, Saifuddin
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
Denoising diffusion models (DDMs) offer a flexible framework for sampling from high dimensional data distributions. DDMs generate a path of probability distributions interpolating between a reference Gaussian distribution and a data distribution by incrementally injecting noise into the data. To numerically simulate the sampling process, a discretisation schedule from the reference back towards clean data must be chosen. An appropriate discretisation schedule is crucial to obtain high quality samples. However, beyond hand crafted heuristics, a general method for choosing this schedule remains elusive. This paper presents a novel algorithm for adaptively selecting an optimal discretisation schedule with respect to a cost that we derive. Our cost measures the work done by the simulation procedure to transport samples from one point in the diffusion path to the next. Our method does not require hyperparameter tuning and adapts to the dynamics and geometry of the diffusion path. Our algorithm only involves the evaluation of the estimated Stein score, making it scalable to existing pre-trained models at inference time and online during training. We find that our learned schedule recovers performant schedules previously only discovered through manual search and obtains competitive FID scores on image datasets., Comment: NeurIPS 2024 accepted paper
- Published
- 2024
64. Flexible and Efficient Semi-Empirical DFTB Parameters for Electronic Structure Prediction of 3D, 2D Iodide Perovskites and Heterostructures
- Author
-
Jiang, Junke, van der Heide, Tammo, Thébaud, Simon, Lien-Medrano, Carlos Raúl, Fihey, Arnaud, Pedesseau, Laurent, Quarti, Claudio, Zacharias, Marios, Volonakis, George, Kepenekian, Mikael, Aradi, Bálint, Sentef, Michael A., Even, Jacky, and Katan, Claudine
- Subjects
Condensed Matter - Materials Science - Abstract
Density Functional Tight-Binding (DFTB), an approximative approach derived from Density Functional Theory (DFT), has the potential to pave the way for simulations of large periodic or non-periodic systems. We have specifically tailored DFTB parameters to enhance the accuracy of electronic band gap calculations in both 3D and 2D lead-iodide perovskites, at a significantly reduced computational cost relative to state-of-the-art ab initio calculations. Our electronic DFTB parameters allow computing not only the band gap but also effective masses of perovskite materials with reasonable accuracy compared to existing experimental data and state-of-the-art DFT calculations. The electronic band structures of vacancy-ordered and, lead- and iodide- deficient perovskites are also explored. Additionally, we demonstrate the efficiency of DFTB in computing electronic band alignments in perovskite heterostructures. The DFTB-based approach is anticipated to be beneficial for studying large-scale systems such as heterostructures and nanocrystals., Comment: 44 pages, 9 figures
- Published
- 2024
65. Constraining the phase shift of relativistic species in DESI BAOs
- Author
-
Whitford, Abbé M., Rivera-Morales, Hugo, Howlett, Cullan, Vargas-Magaña, Mariana, Fromenteau, Sébastien, Davis, Tamara M., Pérez-Fernández, Alejandro, de Mattia, Arnaud, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Ferraro, Simone, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Juneau, Stephanie, Kehoe, Robert, Kirkby, David, Kisner, Theodore, Koposov, Sergey, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Zarrouk, Pauline, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the early Universe, neutrinos decouple quickly from the primordial plasma and propagate without further interactions. The impact of free-streaming neutrinos is to create a temporal shift in the gravitational potential that impacts the acoustic waves known as baryon acoustic oscillations (BAOs), resulting in a non-linear spatial shift in the Fourier-space BAO signal. In this work, we make use of and extend upon an existing methodology to measure the phase shift amplitude $\beta_{\phi}$ and apply it to the DESI Data Release 1 (DR1) BAOs with an anisotropic BAO fitting pipeline. We validate the fitting methodology by testing the pipeline with two publicly available fitting codes applied to highly precise cubic box simulations and realistic simulations representative of the DESI DR1 data. We find further study towards the methods used in fitting the BAO signal will be necessary to ensure accurate constraints on $\beta_{\phi}$ in future DESI data releases. Using DESI DR1, we present individual measurements of the anisotropic BAO distortion parameters and the $\beta_{\phi}$ for the different tracers, and additionally a combined fit to $\beta_{\phi}$ resulting in $\beta_{\phi} = 2.7 \pm 1.7$. After including a prior on the distortion parameters from constraints using \textit{Planck} we find $\beta_{\phi} = 2.7^{+0.60}_{-0.67} $ suggesting $\beta_{\phi} > 0$ at 4.3$\sigma$ significance. This result may hint at a phase shift that is not purely sourced from the standard model expectation for $N_{\rm{eff}}$ or could be a upwards statistical fluctuation in the measured $\beta_{\phi}$; this result relaxes in models with additional freedom beyond $\Lambda$CDM.
- Published
- 2024
66. Linear Regressions with Combined Data
- Author
-
D'Haultfoeuille, Xavier, Gaillac, Christophe, and Maurel, Arnaud
- Subjects
Economics - Econometrics ,Statistics - Methodology - Abstract
We study best linear predictions in a context where the outcome of interest and some of the covariates are observed in two different datasets that cannot be matched. Traditional approaches obtain point identification by relying, often implicitly, on exclusion restrictions. We show that without such restrictions, coefficients of interest can still be partially identified and we derive a constructive characterization of the sharp identified set. We then build on this characterization to develop computationally simple and asymptotically normal estimators of the corresponding bounds. We show that these estimators exhibit good finite sample performances., Comment: 38 pages
- Published
- 2024
67. Strange metal transport from coupling to fluctuating spins
- Author
-
Fratini, Simone, Ralko, Arnaud, and Ciuchi, Sergio
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Metals hosting strong electronic interactions, including high-temperature superconductors, behave in ways that do not conform to the normal Fermi liquid theory. To pinpoint the microscopic origin of this strange metal behavior, here we reexamine the transport and optical properties of the two-dimensional t-J model taking advantage of recent improvements made on the finite temperature Lanczos method (FTLM), enabling numerically exact calculations at unprecedentedly low temperatures and high spectral resolution. We find that strange metallicity is pervasive in the temperature-doping phase diagram wherever magnetic order is suppressed: it is driven by the presence of a fluctuating spin background, and it is therefore independent on hole concentration and unrelated to quantum criticality. Our results point to a two-step transport mechanism, with short- and long-time processes associated respectively with the charge and spin dynamics, the latter being responsible for both the strange metal character and the unconventional optical conductivities seen in experiments., Comment: 20 pages, 4 figures
- Published
- 2024
68. Hard diagrams of split links
- Author
-
Lunel, Corentin, de Mesmay, Arnaud, and Spreer, Jonathan
- Subjects
Mathematics - Geometric Topology ,Computer Science - Computational Geometry - Abstract
Deformations of knots and links in ambient space can be studied combinatorially on their diagrams via local modifications called Reidemeister moves. While it is well-known that, in order to move between equivalent diagrams with Reidemeister moves, one sometimes needs to insert excess crossings, there are significant gaps between the best known lower and upper bounds on the required number of these added crossings. In this article, we study the problem of turning a diagram of a split link into a split diagram, and we show that there exist split links with diagrams requiring an arbitrarily large number of such additional crossings. More precisely, we provide a family of diagrams of split links, so that any sequence of Reidemeister moves transforming a diagram with $c$ crossings into a split diagram requires going through a diagram with $\Omega(\sqrt{c})$ extra crossings. Our proof relies on the framework of bubble tangles, as introduced by Lunel and de Mesmay, and a technique of Chambers and Liokumovitch to turn homotopies into isotopies in the context of Riemannian geometry.
- Published
- 2024
69. Rotograb: Combining Biomimetic Hands with Industrial Grippers using a Rotating Thumb
- Author
-
Bersier, Arnaud, Leonforte, Matteo, Vanetta, Alessio, Wotke, Sarah Lia Andrea, Nappi, Andrea, Zhou, Yifan, Oliani, Sebastiano, Kübler, Alexander M., and Katzschmann, Robert K.
- Subjects
Computer Science - Robotics ,Electrical Engineering and Systems Science - Systems and Control - Abstract
The development of robotic grippers and hands for automation aims to emulate human dexterity without sacrificing the efficiency of industrial grippers. This study introduces Rotograb, a tendon-actuated robotic hand featuring a novel rotating thumb. The aim is to combine the dexterity of human hands with the efficiency of industrial grippers. The rotating thumb enlarges the workspace and allows in-hand manipulation. A novel joint design minimizes movement interference and simplifies kinematics, using a cutout for tendon routing. We integrate teleoperation, using a depth camera for real-time tracking and autonomous manipulation powered by reinforcement learning with proximal policy optimization. Experimental evaluations demonstrate that Rotograb's rotating thumb greatly improves both operational versatility and workspace. It can handle various grasping and manipulation tasks with objects from the YCB dataset, with particularly good results when rotating objects within its grasp. Rotograb represents a notable step towards bridging the capability gap between human hands and industrial grippers. The tendon-routing and thumb-rotating mechanisms allow for a new level of control and dexterity. Integrating teleoperation and autonomous learning underscores Rotograb's adaptability and sophistication, promising substantial advancements in both robotics research and practical applications.
- Published
- 2024
70. Monitoring of food spoilage by high resolution THz analysis
- Author
-
Hindle, Francis, Kuuliala, Lotta, Mouelhi, Meriem, Cuisset, Arnaud, Bray, Cédric, Vanwolleghem, Mathias, Devlieghere, Frank, Mouret, Gael, and Bocquet, Robin
- Subjects
Physics - Instrumentation and Detectors - Abstract
High resolution rotational Terahertz (THz) spectroscopy has been widely applied to the studies of numerous polar gas phase molecules, in particular volatile organic compounds (VOCs). During the storage of foodstuffs packed under a protective atmosphere, microbial activity will lead to the generation of a complex mixture of trace gases that could be used as food spoilage indicators. Here we have demonstrated that the THz instrumentation presently available provides sufficient sensitivity and selectivity to monitor the generation of hydrogen sulfide (H2S) in the headspace of packed Atlantic salmon (Salmo salar) fillet portions. A comprehensive comparison was made by selective-ion flow-tube mass spectrometry (SIFT-MS) in order to validate the THz measurements and protocol. The detectivity of a range of alternative compounds for this application is also provided, based on the experimental detection limit observed and molecular spectroscopic properties. Molecules like ethanol, methyl mercaptan and ammonia are suitable indicators with the presently available sensitivity levels, while dimethyl sulfide, acetone and butanone may be considered with a sensitivity improvement of 2 orders of magnitude.
- Published
- 2024
- Full Text
- View/download PDF
71. Totally elliptic surface group representations
- Author
-
Maret, Arnaud
- Subjects
Mathematics - Representation Theory ,Mathematics - Group Theory ,Mathematics - Geometric Topology ,57K20, 20C15 - Abstract
We characterize all totally elliptic surface group representations into $\mathrm{PSL}_2\mathbb{R}$ by showing that they are either representations into a compact subgroup or Deroin--Tholozan representations., Comment: 11 pages, 5 figures
- Published
- 2024
72. Large deviations of the empirical measures of a strong-Feller Markov process inside a subset and quasi-ergodic distribution
- Author
-
Guillin, Arnaud, Nectoux, Boris, and Wu, Liming
- Subjects
Mathematics - Probability - Abstract
In this work, we establish, for a strong Feller process, the large deviation principle for the occupation measure conditioned not to exit a given subregion. The rate function vanishes only at a unique measure, which is the so-called quasi-ergodic distribution of the process in this subregion. In addition, we show that the rate function is the Dirichlet form in the particular case when the process is reversible. We apply our results to several stochastic processes such as the solutions of elliptic stochastic differential equations driven by a rotationally invariant $\alpha$-stable process, the kinetic Langevin process, and the overdamped Langevin process driven by a Brownian motion.
- Published
- 2024
73. Boundary value problems and Hardy spaces for singular Schr\'odinger equations with block structure
- Author
-
Dumont, Arnaud and Morris, Andrew J.
- Subjects
Mathematics - Analysis of PDEs ,35J25 (Primary) 35J10, 35J25, 42B37, 47D06, 47A60 (Secondary) - Abstract
We obtain Riesz transform bounds and characterise operator-adapted Hardy spaces to solve boundary value problems for singular Schr\"odinger equations $-\mathrm{div}(A\nabla u)+aVu=0$ in the upper half-space $\mathbb{R}^{1+n}_{+}$ with boundary dimension $n\geq 3$. The coefficients $(A,a,V)$ are assumed to be independent of the transversal direction to the boundary, and consist of a complex-elliptic pair $(A,a)$ that is bounded and measurable with a certain block structure, and a non-negative singular potential $V$ in the reverse H\"older class $\mathrm{RH}^{q}(\mathbb{R}^{n})$ for $q\geq \max\{\frac{n}{2},2\}$. This block structure is significant because it allows for coefficients that are not symmetric but for which $\mathrm{L}^{2}(\mathbb{R}^{n})$-solvability persists due to recently obtained Kato square root type estimates. We find extrapolation intervals for exponents $p$ around $2$ on which the Dirichlet problem is well-posed for boundary data in $\mathrm{L}^{p}(\mathbb{R}^{n})$, and the associated Regularity problem is well-posed for boundary data in Sobolev spaces $\dot{\mathcal{V}}^{1,p}(\mathbb{R}^{n})$ that are adapted to the potential $V$, when $p>1$. The well-posedness of these Dirichlet problems and related estimates then allow us to solve the corresponding Neumann problem with boundary data in $\mathrm{L}^{p}$. The results permit boundary data in the Dziuba\`{n}ski--Zienkiewicz Hardy space $\mathrm{H}^{1}_{V}(\mathbb{R}^{n})$ and adapted Hardy--Sobolev spaces $\dot{\mathrm{H}}^{1,p}_{V}(\mathbb{R}^{n})$ when $p\leq 1$. We also obtain comparability of square functions and nontangential maximal functions for the solutions with their boundary data., Comment: Added treatment of the Neumann problem
- Published
- 2024
74. A polyptych of multi-centered deformation spaces
- Author
-
Dubouloz, Adrien and Mayeux, Arnaud
- Subjects
Mathematics - Algebraic Geometry - Abstract
We study deformation spaces using multi-centered dilatations. Interpolating Fulton simple deformation space and Rost asymmetric double deformation space, we introduce (asymmetric) deformation spaces attached to chains of immersions of arbitrary lengths. One of the main results of this paper is the so-called panelization isomorphism, producing several isomorphisms between the deformation space of length $n$ and deformation spaces of smaller lengths. Combining these isomorphisms, we get a polyptych $\mathscr{P}(n)$ of deformation spaces. Having these panelization isomorphisms allows to compute the strata -- certain restrictions of special interests -- of deformation spaces.
- Published
- 2024
75. Long-time analysis of a pair of on-lattice and continuous run-and-tumble particles with jamming interactions
- Author
-
Guillin, Arnaud, Hahn, Leo, and Michel, Manon
- Subjects
Mathematics - Probability ,Condensed Matter - Statistical Mechanics - Abstract
Run-and-Tumble Particles (RTPs) are a key model of active matter. They are characterized by alternating phases of linear travel and random direction reshuffling. By this dynamic behavior, they break time reversibility and energy conservation at the microscopic level. It leads to complex out-of-equilibrium phenomena such as collective motion, pattern formation, and motility-induced phase separation (MIPS). In this work, we study two fundamental dynamical models of a pair of RTPs with jamming interactions and provide a rigorous link between their discrete- and continuous-space descriptions. We demonstrate that as the lattice spacing vanishes, the discrete models converge to a continuous RTP model on the torus, described by a Piecewise Deterministic Markov Process (PDMP). This establishes that the invariant measures of the discrete models converge to that of the continuous model, which reveals finite mass at jamming configurations and exponential decay away from them. This indicates effective attraction, which is consistent with MIPS. Furthermore, we quantitatively explore the convergence towards the invariant measure. Such convergence study is critical for understanding and characterizing how MIPS emerges over time. Because RTP systems are non-reversible, usual methods may fail or are limited to qualitative results. Instead, we adopt a coupling approach to obtain more accurate, non-asymptotic bounds on mixing times. The findings thus provide deeper theoretical insights into the mixing times of these RTP systems, revealing the presence of both persistent and diffusive regimes.
- Published
- 2024
76. Automatic EEG Independent Component Classification Using ICLabel in Python
- Author
-
Delorme, Arnaud, Truong, Dung, Pion-Tonachini, Luca, and Makeig, Scott
- Subjects
Electrical Engineering and Systems Science - Signal Processing ,Computer Science - Machine Learning ,Quantitative Biology - Neurons and Cognition - Abstract
ICLabel is an important plug-in function in EEGLAB, the most widely used software for EEG data processing. A powerful approach to automated processing of EEG data involves decomposing the data by Independent Component Analysis (ICA) and then classifying the resulting independent components (ICs) using ICLabel. While EEGLAB pipelines support high-performance computing (HPC) platforms running the open-source Octave interpreter, the ICLabel plug-in is incompatible with Octave because of its specialized neural network architecture. To enhance cross-platform compatibility, we developed a Python version of ICLabel that uses standard EEGLAB data structures. We compared ICLabel MATLAB and Python implementations to data from 14 subjects. ICLabel returns the likelihood of classification in 7 classes of components for each ICA component. The returned IC classifications were virtually identical between Python and MATLAB, with differences in classification percentage below 0.001%.
- Published
- 2024
77. Long time behavior of killed Feynman-Kac semigroups with singular Schr{\'o}dinger potentials
- Author
-
Guillin, Arnaud, Lu, D I, Nectoux, Boris, and Wu, Liming
- Subjects
Mathematics - Probability - Abstract
In this work, we investigate the compactness and the long time behavior of killed Feynman-Kac semigroups of various processes arising from statistical physics with very general singular Schr{\"o}dinger potentials. The processes we consider cover a large class of processes used in statistical physics, with strong links with quantum mechanics and (local or not) Schr{\"o}dinger operators (including e.g. fractional Laplacians). For instance we consider solutions to elliptic differential equations, L{\'e}vy processes, the kinetic Langevin process with locally Lipschitz gradient fields, and systems of interacting L{\'e}vy particles. Our analysis relies on a Perron-Frobenius type theorem derived in a previous work [A. Guillin, B. Nectoux, L. Wu, 2020 J. Eur. Math. Soc.] for Feller kernels and on the tools introduced in [L. Wu, 2004, Probab. Theory Relat. Fields] to compute bounds on the essential spectral radius of a bounded nonnegative kernel.
- Published
- 2024
78. Forest-skein groups IV: dynamics
- Author
-
Brothier, Arnaud and Seelig, Ryan
- Subjects
Mathematics - Group Theory ,Mathematics - Dynamical Systems - Abstract
We study forest-skein (FS) groups using dynamics. A simple Ore FS category produces three FS groups analogous to Richard Thompson's groups. Reconstruction theorems of McCleary and Rubin apply to these FS groups: each of them encodes a canonical rigid group action and thus carries powerful dynamical invariants. We then explicitly construct infinitely many isomorphism classes of finitely presented (of type $F_\infty$) infinite simple groups which act faithfully on the circle by (orientation-preserving) homeomorphisms, but admit no non-trivial finite piecewise linear actions nor finite piecewise projective actions. To the best of our knowledge these are the first examples witnessing these properties. We also show these groups fit into the finite germ extension framework of Belk, Hyde, and Matucci., Comment: 39 pages, 14 figures
- Published
- 2024
79. Analytical and EZmock covariance validation for the DESI 2024 results
- Author
-
Forero-Sánchez, Daniel, Rashkovetskyi, Michael, Alves, Otávio, de Mattia, Arnaud, Nadathur, Seshadri, Zarrouk, Pauline, Gil-Marín, Héctor, Ding, Zhejie, Yu, Jiaxi, Andrade, Uendert, Chen, Xinyi, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Vargas, Miguel Enriquez, Gaztañaga, Enrique, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Miquel, Ramon, Moustakas, John, Palanque-Delabrouille, Nathalie, Percival, Will, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full Shape, two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on en ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full Shape analyses, which motivates the use of a corrected mock covariance for DESI's Full Shape analysis., Comment: 23 pages, 5 figures 7 tables, submitted to JCAP
- Published
- 2024
80. Introducing Milabench: Benchmarking Accelerators for AI
- Author
-
Delaunay, Pierre, Bouthillier, Xavier, Breuleux, Olivier, Ortiz-Gagné, Satya, Bilaniuk, Olexa, Normandin, Fabrice, Bergeron, Arnaud, Carrez, Bruno, Alain, Guillaume, Blanc, Soline, Osterrath, Frédéric, Viviano, Joseph, Patil, Roger Creus-Castanyer Darshan, Awal, Rabiul, and Zhang, Le
- Subjects
Computer Science - Machine Learning - Abstract
AI workloads, particularly those driven by deep learning, are introducing novel usage patterns to high-performance computing (HPC) systems that are not comprehensively captured by standard HPC benchmarks. As one of the largest academic research centers dedicated to deep learning, Mila identified the need to develop a custom benchmarking suite to address the diverse requirements of its community, which consists of over 1,000 researchers. This report introduces Milabench, the resulting benchmarking suite. Its design was informed by an extensive literature review encompassing 867 papers, as well as surveys conducted with Mila researchers. This rigorous process led to the selection of 26 primary benchmarks tailored for procurement evaluations, alongside 16 optional benchmarks for in-depth analysis. We detail the design methodology, the structure of the benchmarking suite, and provide performance evaluations using GPUs from NVIDIA, AMD, and Intel. The Milabench suite is open source and can be accessed at github.com/mila-iqia/milabench.
- Published
- 2024
81. High-energy, few-cycle light pulses tunable across the vacuum ultraviolet
- Author
-
Andrade, José R. C., Kretschmar, Martin, Danylo, Rostyslav, Carlström, Stefanos, Witting, Tobias, Mermillod-Blondin, Alexandre, Patchkovskii, Serguei, Ivanov, Misha Yu, Vrakking, Marc J. J., Rouzée, Arnaud, and Nagy, Tamas
- Subjects
Physics - Optics - Abstract
In the last few decades the development of ultrafast lasers has revolutionized our ability to gain insight into light-matter interactions. The appearance of few-cycle light sources available from the visible to the mid-infrared spectral range and the development of attosecond extreme ultraviolet and x-ray technologies provide for the first time the possibility to directly observe and control ultrafast electron dynamics in matter on their natural time scale. However, few-fs sources have hardly been available in the deep ultraviolet (DUV; 4-6 eV, 300-200 nm) and are unavailable in the vacuum ultraviolet (VUV; 6-12 eV, 200-100 nm) spectral range, corresponding to the photon energies required for valence excitation of atoms and molecules. Here, we generate VUV pulses with $\mu$J energy tunable between 160 and 190 nm via resonant dispersive wave emission during soliton self-compression in a capillary. We fully characterize the pulses in situ using frequency-resolved optical gating based on two-photon photoionization in noble gases. The measurements reveal that in most of the cases the pulses are shorter than 3 fs. These findings unlock the potential to investigate ultrafast electron dynamics with a time-resolution that has been hitherto inaccessible when using VUV pulses.
- Published
- 2024
82. Validity of the Fr\'ohlich model for a mobile impurity in a Bose-Einstein condensate
- Author
-
Lampart, Jonas and Triay, Arnaud
- Subjects
Condensed Matter - Quantum Gases ,Mathematical Physics - Abstract
We analyze the many-body Hamiltonian describing a mobile impurity immersed in a Bose-Einstein condensate (BEC). Using exact unitary transformations and rigorous error estimates, we show the validity of the Bogoliubov-Fr\"ohlich Hamiltonian for the Bose polaron in the regime of moderately strong, repulsive interactions with a dilute BEC. Moreover, we calculate analytically the universal logarithmic correction to the ground state energy that arises from an impurity mediated phonon-phonon interaction., Comment: Updated bibliography
- Published
- 2024
83. Mapping class group orbit closures for Deroin-Tholozan representations
- Author
-
Bouilly, Yohann, Faraco, Gianluca, and Maret, Arnaud
- Subjects
Mathematics - Dynamical Systems ,Mathematics - Geometric Topology ,Mathematics - Symplectic Geometry ,37B05, 57K20, 20C15 - Abstract
We prove that infinite mapping class group orbits are dense in the character variety of Deroin-Tholozan representations. In other words, the action is minimal except for finite orbits. Our arguments rely on the symplectic structure of the character variety, emphasizing this geometric perspective over its algebraic properties., Comment: 39 pages, 15 figures
- Published
- 2024
84. Conformalized Credal Regions for Classification with Ambiguous Ground Truth
- Author
-
Caprio, Michele, Stutz, David, Li, Shuo, and Doucet, Arnaud
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning - Abstract
An open question in \emph{Imprecise Probabilistic Machine Learning} is how to empirically derive a credal region (i.e., a closed and convex family of probabilities on the output space) from the available data, without any prior knowledge or assumption. In classification problems, credal regions are a tool that is able to provide provable guarantees under realistic assumptions by characterizing the uncertainty about the distribution of the labels. Building on previous work, we show that credal regions can be directly constructed using conformal methods. This allows us to provide a novel extension of classical conformal prediction to problems with ambiguous ground truth, that is, when the exact labels for given inputs are not exactly known. The resulting construction enjoys desirable practical and theoretical properties: (i) conformal coverage guarantees, (ii) smaller prediction sets (compared to classical conformal prediction regions) and (iii) disentanglement of uncertainty sources (epistemic, aleatoric). We empirically verify our findings on both synthetic and real datasets.
- Published
- 2024
85. Investigation of Microstructural Evolution in All-Solid-State Micro-Batteries through in situ Electrochemical TEM
- Author
-
Cretu, Sorina, Folastre, Nicolas, Troadec, David, Andersen, Ingrid Marie, Straubinge, Rainer, Krans, Nynke A., Aguy, Stéphane, Jamali, Arash, Duchamp, Martial, and Demortière, Arnaud
- Subjects
Condensed Matter - Materials Science ,Physics - Applied Physics ,Physics - Chemical Physics ,Physics - Instrumentation and Detectors - Abstract
All-solid-state batteries hold great promise for electric vehicle applications due to their enhanced safety and higher energy density. However, further performance optimization requires a deeper understanding of their degradation mechanisms, particularly at the nanoscale. This study investigates the real-time degradation processes of an oxide-based all-solid-state micro-battery, using focused ion beam lamellae composed of LAGP as the solid electrolyte, LiFePO4 (LFP) composite as the positive electrode, and LiVPO4 (LVP) composite as the negative electrode. In situ electrochemical transmission electron microscopy (TEM) revealed critical degradation phenomena, including the formation of cracks along grain boundaries in the solid electrolyte due to lithium diffusion and mechanical stress. Additionally, the shrinkage of solid electrolyte particles and the formation of amorphous phases were observed. These findings highlight the importance of grain boundary dynamics and amorphization in the performance of solid electrolytes and provide insights into degradation mechanisms that can inform the design of more durable all-solid-state batteries., Comment: 26 pages, 6 figures
- Published
- 2024
86. Wall slip and bulk flow heterogeneity in a sludge under shear
- Author
-
Castel, Sebastien, Poulesquen, Arnaud, and Manneville, Sebastien
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
We investigate the shear flow of a sludge mimicking slurries produced by the nuclear industry and constituted of a dispersion of non-Brownian particles into an attractive colloidal dispersion at a total solid volume fraction of about 10%. Combining rheometry and ultrasound flow imaging, we show that, upon decreasing the shear rate, the flow transitions from a homogeneous shear profile in the bulk to a fully arrested plug-like state with total wall slip, through an oscillatory regime where strong fluctuations of the slip velocity propagate along the vorticity direction. When the shear stress is imposed close to the yield stress, the shear rate presents large, quasi-periodic peaks, associated with the propagation of local stick-and-slip events along the vorticity direction. Such complex dynamics, reminiscent of similar phenomena reported in much denser suspensions, highlight the importance of local flow characterization to fully understand sludge rheology., Comment: 22 pages, 7 figures
- Published
- 2024
87. RPS: A Generic Reservoir Patterns Sampler
- Author
-
Diop, Lamine, Plantevit, Marc, and Soulet, Arnaud
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Mathematics - Combinatorics ,Mathematics - Probability ,60: Probability theory ,G.3 ,E.1 ,E.2 ,F.2 - Abstract
Efficient learning from streaming data is important for modern data analysis due to the continuous and rapid evolution of data streams. Despite significant advancements in stream pattern mining, challenges persist, particularly in managing complex data streams like sequential and weighted itemsets. While reservoir sampling serves as a fundamental method for randomly selecting fixed-size samples from data streams, its application to such complex patterns remains largely unexplored. In this study, we introduce an approach that harnesses a weighted reservoir to facilitate direct pattern sampling from streaming batch data, thus ensuring scalability and efficiency. We present a generic algorithm capable of addressing temporal biases and handling various pattern types, including sequential, weighted, and unweighted itemsets. Through comprehensive experiments conducted on real-world datasets, we evaluate the effectiveness of our method, showcasing its ability to construct accurate incremental online classifiers for sequential data. Our approach not only enables previously unusable online machine learning models for sequential data to achieve accuracy comparable to offline baselines but also represents significant progress in the development of incremental online sequential itemset classifiers., Comment: Accepted at 2024 IEEE International Conference on Big Data
- Published
- 2024
88. Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices
- Author
-
Nanini, Santino, Abid, Mariem, Mamouni, Yassir, Wiedemann, Arnaud, Jouvet, Philippe, and Bourassa, Stephane
- Subjects
Computer Science - Machine Learning - Abstract
This paper presents the development of machine learning (ML) models to predict hypoxemia severity during emergency triage, especially in Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) events, using physiological data from medical-grade sensors. Gradient Boosting Models (XGBoost, LightGBM, CatBoost) and sequential models (LSTM, GRU) were trained on physiological and demographic data from the MIMIC-III and IV datasets. A robust preprocessing pipeline addressed missing data, class imbalances, and incorporated synthetic data flagged with masks. Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability, making them well-suited for real-time decision-making. While their performance was comparable to that of sequential models, the GBMs used score features from six physiological variables derived from the enhanced National Early Warning Score (NEWS) 2, which we termed NEWS2+. This approach significantly improved prediction accuracy. While sequential models handled temporal data well, their performance gains did not justify the higher computational cost. A 5-minute prediction window was chosen for timely intervention, with minute-level interpolations standardizing the data. Feature importance analysis highlighted the significant role of mask and score features in enhancing both transparency and performance. Temporal dependencies proved to be less critical, as Gradient Boosting Models were able to capture key patterns effectively without relying on them. This study highlights ML's potential to improve triage and reduce alarm fatigue. Future work will integrate data from multiple hospitals to enhance model generalizability across clinical settings., Comment: 12 figures, 12 tables and 39 pages
- Published
- 2024
89. Bi-phasic lithiation/delithiation dynamics in Li-ion batteries: application of the Smoothed Boundary Method in the phase field model
- Author
-
Yousfi, Ahmed, Demortière, Arnaud, and Boussinot, Guillaume
- Subjects
Condensed Matter - Materials Science - Abstract
An appropriate description of the lithiation/delithiation dynamics in bi-phasic primary cathode particles of Li-ion batteries requires an accurate treatment of the conditions holding at the interface between the particle and the surrounding liquid electrolyte. We propose a phase field model based on the Allen-Cahn approach within which the particle-electrolyte interface is smooth (Smoothed Boundary Method - SBM), in order to simulate arbitrarily shaped particles. Surface terms are added to the evolution equations, and SBM calculations are compared with benchmark simulations for which the boundary conditions are explicitly imposed at the borders of the calculation domain. We find that strengthening factors for the surface terms are needed in order to achieve the desired conditions for the phase and elastic fields, and to correctly reproduce the level of stress within the particle. This reveals crucial in the context of Li-ion batteries for an accurate prediction of the Li insertion/extraction rate and the Li diffusion behavior. We perform also a simulation under potentio-static conditions with a full coupling of the different physical processes at play. It illustrates the applicability of our approach and demonstrates the capabilities of the SBM for a simulation of lithiation/delithiation dynamics with coupled electrochemistry and mechanics., Comment: 17 pages, 15 figures
- Published
- 2024
90. Sharp propagation of chaos for McKean-Vlasov equation with non constant diffusion coefficient
- Author
-
Grass, Jules, Guillin, Arnaud, and Poquet, Christophe
- Subjects
Mathematics - Probability - Abstract
We present a method to obtain sharp local propagation of chaos results for a system of N particles with a diffusion coefficient that it not constant and may depend of the empirical measure. This extends the recent works of Lacker [14] and Wang [24] to the case of non constant diffusions. The proof relies on the BBGKY hierarchy to obtain a system of differential inequalities on the relative entropy of k particles, involving the fisher information.
- Published
- 2024
91. Cubic Siegel polynomials and the bifurcation measure
- Author
-
Astorg, Matthieu, Cheraghi, Davoud, and Chéritat, Arnaud
- Subjects
Mathematics - Dynamical Systems ,Mathematics - Complex Variables ,37F10 (Primary), 34F46 (Secondary) - Abstract
We prove that cubic polynomial maps with a fixed Siegel disk and a critical orbit eventually landing inside that Siegel disk lie in the support of the bifurcation measure. This answers a question of Dujardin in positive. Our result implies the existence of holomorphic disks in the support of the bifurcation measure, and also implies that the set of rigid parameters is not closed in the moduli space of cubic polynomials.
- Published
- 2024
92. Error estimates between SGD with momentum and underdamped Langevin diffusion
- Author
-
Guillin, Arnaud, Wang, Yu, Xu, Lihu, and Yang, Haoran
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Mathematics - Probability - Abstract
Stochastic gradient descent with momentum is a popular variant of stochastic gradient descent, which has recently been reported to have a close relationship with the underdamped Langevin diffusion. In this paper, we establish a quantitative error estimate between them in the 1-Wasserstein and total variation distances.
- Published
- 2024
93. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
94. Even-odd effect in multilayer Kitaev honeycomb magnets
- Author
-
Merino, Jaime and Ralko, Arnaud
- Subjects
Condensed Matter - Strongly Correlated Electrons - Abstract
Motivated by the three-dimensional structure of Kitaev materials we explore multilayer Kitaev models. The magnetic properties of a multilayer of an arbitrary number of Kitaev honeycomb layers stacked on top of each other coupled through a Heisenberg interaction, J, is analyzed through Abrikosov fermion mean-field theory. The system sustains quantum spin liquid (QSL) solutions which have different character depending on parity of the number of layers. While in even layered Kitaev models a gapped QSL emerges, odd-layered models host gapless QSLs. The projective symmetry group analysis of these solutions unravel a layer-to-layer inversion symmetry rather than an expected reflection. Although these QSLs retain features of the single layer Kitaev spin liquid (KSL), they should be regarded hybrid QSLs consisting on several KSLs. The good agreement at large-J between the energy of the Gutzwiller projected mean-field QSL and the exact energy indicates that such QSL Ansatz is adiabatically connected to the exact ground state. We also find that the Kitaev gapped chiral quantum spin liquid induced by external magnetic fields is stabilized by an antiferromagnetic interlayer coupling. Our results are relevant to the physics of alpha-RuCl3 and H3LiIr2O6 which are examples of magnetically coupled multilayer Kitaev models., Comment: 16 pages, 8 figures
- Published
- 2024
- Full Text
- View/download PDF
95. Solving Helmholtz problems with finite elements on a quantum annealer
- Author
-
Rémi, Arnaud, Damanet, François, and Geuzaine, Christophe
- Subjects
Quantum Physics ,Physics - Computational Physics - Abstract
Solving Helmholtz problems using finite elements leads to the resolution of a linear system which is challenging to solve for classical computers. In this paper, we investigate how quantum annealers could address this challenge. We first express the linear system arising from the Helmholtz problem as a generalized eigenvalue problem (gEVP). The obtained gEVP is mapped into quadratic unconstrained binary optimization problems (QUBOs) which we solve using an adaptive quantum annealing eigensolver (AQAE) and its classical equivalent. We identify two key parameters in the success of AQAE for solving Helmholtz problems: the system condition number and the integrated control errors (ICE) in the quantum hardware. Our results show that a large system condition number implies a finer discretization grid for AQAE to converge, leading to larger QUBOs and that AQAE is either tolerant or not with respect to ICE depending on the gEVP., Comment: 13 pages, 7 figures
- Published
- 2024
96. Graph Exploration: The Impact of a Distance Constraint
- Author
-
Devismes, Stéphane, Dieudonné, Yoann, and Labourel, Arnaud
- Subjects
Computer Science - Data Structures and Algorithms - Abstract
A mobile agent, starting from a node $s$ of a simple undirected connected graph $G=(V,E)$, has to explore all nodes and edges of $G$ using the minimum number of edge traversals. To do so, the agent uses a deterministic algorithm that allows it to gain information on $G$ as it traverses its edges. During its exploration, the agent must always respect the constraint of knowing a path of length at most $D$ to go back to node $s$. The upper bound $D$ is fixed as being equal to $(1+\alpha)r$, where $r$ is the eccentricity of node $s$ (i.e., the maximum distance from $s$ to any other node) and $\alpha$ is any positive real constant. This task has been introduced by Duncan et al. [ACM Trans. Algorithms 2006] and is known as \emph{distance-constrained exploration}. The \emph{penalty} of an exploration algorithm running in $G$ is the number of edge traversals made by the agent in excess of $|E|$. Panaite and Pelc [J. Algorithms 1999] gave an algorithm for solving exploration without any constraint on the moves that is guaranteed to work in every graph $G$ with a (small) penalty in $\mathcal{O}(|V|)$. Hence, a natural question is whether we could obtain a distance-constrained exploration algorithm with the same guarantee as well. In this paper, we provide a negative answer to this question. We also observe that an algorithm working in every graph $G$ with a linear penalty in $|V|$ cannot be obtained for the task of \emph{fuel-constrained exploration}, another variant studied in the literature. This solves an open problem posed by Duncan et al. [ACM Trans. Algorithms 2006] and shows a fundamental separation with the task of exploration without constraint on the moves.
- Published
- 2024
97. CHEX-MATE: the intracluster medium entropy distribution in the gravity-dominated regime
- Author
-
Riva, G., Pratt, G. W., Rossetti, M., Bartalucci, I., Kay, S. T., Rasia, E., Gavazzi, R., Umetsu, K., Arnaud, M., Balboni, M., Bonafede, A., Bourdin, H., De Grandi, S., De Luca, F., Eckert, D., Ettori, S., Gaspari, M., Gastaldello, F., Ghirardini, V., Ghizzardi, S., Gitti, M., Lovisari, L., Maughan, B. J., Mazzotta, P., Molendi, S., Pointecouteau, E., Sayers, J., Sereno, M., and Towler, I.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We characterise the entropy profiles of 32 very high mass ($M_{500}>7.75\times10^{14}~M_{\odot}$) galaxy clusters (HIGHMz), selected from the CHEX-MATE sample, to study the intracluster medium (ICM) entropy distribution in a regime where non-gravitational effects are minimised. Using XMM-Newton measurements, we measure the entropy profiles up to ~$R_{500}$ for all objects. The scaled profiles exhibit large dispersion in the central regions, but converge rapidly to the expectation from pure gravitational collapse beyond the core. We quantify the correlation between the ICM morphological parameters and scaled entropy as a function of radius, showing that morphologically relaxed (disturbed) objects have low (high) central entropy. We compare our data to other observational samples, finding differences in normalisation which are linked to the average mass of the samples in question. We find that a weaker mass dependence than self-similar in the scaling (Am ~ -0.25) allows us to minimise the dispersion in the radial range [0.3-0.8]$R_{500}$ for clusters spanning over a decade in mass. The deviation from self-similarity is radially dependent and is more pronounced at small and intermediate radii than at $R_{500}$. We also investigate the distribution of central entropy $K_0$, finding no evidence for bimodality, and outer slopes $\alpha$, which peaks at ~1.1. Using weak lensing masses, we find indication for a small suppression of the scatter (~30%) beyond the core when using masses derived from Yx in the rescaling. Finally, we compare to recent cosmological numerical simulations from THE THREE HUNDRED and MACSIS, finding good agreement with our observational data. These results provide a robust observational benchmark in the gravity-dominated regime and will serve as a future reference for samples at lower mass, higher redshifts, and for ongoing work using cosmological numerical simulations., Comment: 26 pages, 18 figures, 6 tables. Accepted for publication in A&A
- Published
- 2024
- Full Text
- View/download PDF
98. Optimization of Complex Process, Based on Design Of Experiments, a Generic Methodology
- Author
-
Baderot, Julien, Cauchepin, Yann, Seiller, Alexandre, Fontanges, Richard, Martinez, Sergio, Foucher, Johann, Fuchs, Emmanuel, Daanoune, Mehdi, Grenier, Vincent, Barra, Vincent, and Guillin, Arnaud
- Subjects
Computer Science - Neural and Evolutionary Computing ,Mathematics - Optimization and Control - Abstract
MicroLED displays are the result of a complex manufacturing chain. Each stage of this process, if optimized, contributes to achieving the highest levels of final efficiencies. Common works carried out by Pollen Metrology, Aledia, and Universit{\'e} Clermont-Auvergne led to a generic process optimization workflow. This software solution offers a holistic approach where stages are chained together for gaining a complete optimal solution. This paper highlights key corners of the methodology, validated by the experiments and process experts: data cleaning and multi-objective optimization., Comment: Eurodisplay 2024, Sep 2024, Grenoble, France
- Published
- 2024
99. Learning Interpretable Classifiers for PDDL Planning
- Author
-
Lequen, Arnaud
- Subjects
Computer Science - Artificial Intelligence - Abstract
We consider the problem of synthesizing interpretable models that recognize the behaviour of an agent compared to other agents, on a whole set of similar planning tasks expressed in PDDL. Our approach consists in learning logical formulas, from a small set of examples that show how an agent solved small planning instances. These formulas are expressed in a version of First-Order Temporal Logic (FTL) tailored to our planning formalism. Such formulas are human-readable, serve as (partial) descriptions of an agent's policy, and generalize to unseen instances. We show that learning such formulas is computationally intractable, as it is an NP-hard problem. As such, we propose to learn these behaviour classifiers through a topology-guided compilation to MaxSAT, which allows us to generate a wide range of different formulas. Experiments show that interesting and accurate formulas can be learned in reasonable time.
- Published
- 2024
100. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.