51. FlowDT: A Flow-aware Digital Twin for computer networks
- Author
-
Ferriol Galmés, Miquel, Cheng, Xiangle, Shi, Xiang, Xiao, Shihan, Barlet Ros, Pere|||0000-0001-7837-0886, Cabellos Aparicio, Alberto|||0000-0001-9329-7584, Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors, Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, and Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
- Subjects
Telecomunicació -- Tràfic -- Gestió ,Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors [Àrees temàtiques de la UPC] ,Ordinadors, Xarxes d' -- Gestió ,Machine learning ,Aprenentatge automàtic ,Computer networks -- Management ,Telecommunication -- Traffic -- Management ,Network modeling ,Graph neural networks - Abstract
Network modeling is an essential tool for network planning and management. It allows network administrators to explore the performance of new protocols, mechanisms, or optimal configurations without the need for testing them in real production networks. Recently, Graph Neural Networks (GNNs) have emerged as a practical solution to produce network models that can learn and extract complex patterns from real data without making any assumptions. However, state-of-the-art GNN-based network models only work with traffic matrices, this is a very coarse and simplified representation of network traffic. Although this assumption has shown to work well in certain use-cases, it is a limiting factor because, in practice, networks operate with flows. In this paper, we present FlowDT a new DL-based solution designed to model computer networks at the fine-grained flow level. In our evaluation, we show how FlowDT can accurately predict relevant per-flow performance metrics with an error of 3.5%, FlowDT’s performance is also benchmarked against vanilla DL models as well as with Queuing Theory. This work has been supported by the Spanish Government through project TRAINER-A (PID2020-118011GB-C21) with FEDER contribution and the Catalan Institution for Research and Advanced Studies (ICREA).
- Published
- 2022