51. Mechanisms of vemurafenib-induced anti-tumor effects in ATC FRO cells
- Author
-
Jingwei Xu, Di Xue, Yang Li, Jianwen Zhou, Hongyue Chen, and Li Fan
- Subjects
Vemurafenib ,Anaplastic thyroid carcinoma ,BANCR ,PI3K/AKT pathway ,Proliferation and metastasis ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Background: Anaplastic Thyroid Carcinoma (ATC) is a rare and deadly malignant tumor in humans. It is prone to developing resistance to radiotherapy and chemotherapy. Molecular targeted therapy offers a novel way to treat ATC. The BRAF mutation is closely associated with many cancers, including thyroid carcinoma. Vemurafenib, a small-molecule inhibitor, is specifically designed to target the mutant serine/threonine kinase BRAF. The objective of this study is to elucidate the regulatory mechanisms underlying the effects of vemurafenib on human anaplastic thyroid carcinoma cell line FRO and to assess its potential therapeutic role. Methods: The effects of vemurafenib on the proliferation of FRO cells were assessed by the CCK-8 method and Colony-forming assay. Transwell chambers and scratch tests were employed to examine the impact of vemurafenib on the invasion and migration of FRO cells. Apoptosis and cycle distribution of FRO cells were analyzed by tunel assay and flow cytometry. The effects of vemurafenib on the expression of BRAF-activated non-protein coding RNA (BANCR), Bax, Bcl2, and E-cadherin were evaluated by qRT-PCR. Furthermore, the effects of vemurafenib on the expression of phosphoinositol-3-kinase (PI3K)/phosphoinositol-3-kinase (AKT) pathway-related proteins, BRAF, CyclinD1, Bcl-2, Bax, and E-cadherin proteins in FRO cells were investigated through the western-blot method. All experiments were conducted in three replicates. Results: Vemurafenib was observed to inhibit proliferation and induce apoptosis in a dose- and time-dependent manner (P
- Published
- 2024
- Full Text
- View/download PDF