51. Steroid synthesis and metabolism in the nervous system: trophic and protective effects.
- Author
-
Schumacher M, Akwa Y, Guennoun R, Robert F, Labombarda F, Desarnaud F, Robel P, De Nicola AF, and Baulieu EE
- Subjects
- Animals, Brain Injuries metabolism, Spinal Cord Injuries metabolism, Nervous System metabolism, Steroids biosynthesis, Steroids metabolism
- Abstract
Steroids influence the activity and plasticity of neurons and glial cells during early development, and they continue to exert trophic and protective effects in the adult nervous system. Steroids are produced by the gonads and adrenal glands and reach the brain, the spinal cord and the peripheral nerves via the bloodstream. However, some of them, named "neurosteroids", can also be synthesized within the nervous system. They include pregnenolone, progesterone, dehydroepiandrosterone and their reduced metabolites and sulfate esters. Little is known concerning the regulation of steroid synthesis in the nervous system, which involves interactions between different cell types. For example, the synthesis of progesterone by Schwann cells in peripheral nerves is regulated by a diffusible neuronal signal. Neurotrophic and neuroprotective effects of steroids have been documented both in cell culture and in vivo. PROG plays an important role in the neurological recovery from traumatic injury of the brain and spinal cord by mechanisms involving protection from excitotoxic cell death, lipid peroxydation and the induction of specific enzymes. After transection of the rat spinal cord, PROG increases the number of nitric oxide synthase expressing astrocytes immediately above and below the lesion. PROG also plays an important role in the formation of new myelin sheaths. This has been shown in the regenerating mouse sciatic nerve after lesion and in cocultures of sensory neurons and Schwann cells. PROG promotes myelination by activating the expression of genes coding for myelin proteins. The modulation of neurostransmitter receptors, in particular the type A gamma-aminobutyric acid, the N-methyl-D-aspartate and the sigma 1 receptors, is involved in the psychopharmacological effects of steroids and allows to explain their anticonvulsant, anxiolytic, antidepressive and sedative effects as well as their influence on memory. Pregnenolone sulfate has been shown to reverse age-related deficits in spatial memory performance and to have protective effects on memory in different models of amnesia.
- Published
- 2000
- Full Text
- View/download PDF