To better understand the mechanisms responsible for differences in uptake and distribution of cadmium (Cd), nutrient-solution experiments were conducted with different varieties of rice ( Oryza sativa ), ‘Khitish’ and ‘CNRH3’. The plants were grown in a complete nutrient solution with different levels of pCd (-log free Cd +2 activity) and pFe [-log free iron (Fe +2 ) activity]. The required concentrations of chelating agent and metals were determined using a computerized chemical equilibrium model such as Geochem-PC. Experimental treatments included a combination of four pCd activity levels (0, 7.9, 8.2, and 8.5) applied as Cd (NO 3 ) 2 4H 2 O, and two pFe activity levels (17.0 and 17.8) applied as FeCl 3 . The application of both Cd and Fe in solution culture significantly affected plant growth, yield, and Cd accumulation in plant tissue. In general, yield of rice was decreased by an increase in amount of solution Cd; however, yield response varied among the cultivars. At the 7.9 pCd level, yields of rice cultivars ‘Khitish’ and ‘CNRH3’ were reduced to 69% and 65%, respectively, compared with control plants. Root Cd concentrations ranged from 2.6 mg kg -1 (control plants) to 505.7 mg kg -1 and were directly related to solution Cd concentrations. In rice plants, Cd toxicity symptoms resembled Fe chlorosis. Differential tolerance of varieties to phytotoxicity was not readily visible, but a significant interaction of substrate Cd and variety was obtained from dry-matter yields. Significant interactions indicated that response of tissue Cd concentration, plant Cd uptake, and translocation of Cd to the aerial parts were dependent on variety as well as substrate Cd. Uptake of Cd by roots was significantly higher than by shoots. Higher Cd uptake by rice plants decreased the uptake of other beneficial metals. The effect of Cd and Fe on the rate of phytometallophore release was also studied in the nutrient solution. Among the rice genotypes, ‘Khitish’ was the most sensitive to Cd toxicity. In both genotypes, with the onset of visual Cd-toxicity symptoms, the release of phytometallophore (PM) was enhanced. Among the rice varieties, ‘Khitish’ had the highest rate of PM release. Treatments with the metal ions studied produced a decrease in chlorophyll and enzyme activity. A decrease in concentrations of chlorophyll pigments in the third leaf was observed due to the highest activity level of Cd (pCd 7.9). Activities of enzymes such as peroxidase (POD) and superoxide dismutase (SOD) are altered by toxic amounts of Cd. Changes in enzyme activities occurred at the lowest activity of Cd (pCd 8.5) in solution. Peroxidase activity increased in the third leaf. Results showed that in contrast with growth parameters, the measurements of enzyme activities may be included as early biomarkers in a plant bioassay to assess the phytotoxicity of Cd-contaminated solution on rice plants. Evidence that Cd uptake and translocation are genetically controlled warrants the selection of varieties that assimilate the least Cd and that translocate the least metal to the plant part to be used for human and animal consumption. [ABSTRACT FROM AUTHOR]