51. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis
- Author
-
Cuauhtemoc, Licona-Cassani, Alvaro R, Lara, Natividad, Cabrera-Valladares, Adelfo, Escalante, Georgina, Hernández-Chávez, Alfredo, Martinez, Francisco, Bolívar, and Guillermo, Gosset
- Subjects
Metabolic Engineering ,Fermentation ,Pyruvate Kinase ,Shikimic Acid ,Phosphoenolpyruvate Sugar Phosphotransferase System ,Metabolic Networks and Pathways ,Bacillus subtilis - Abstract
The glycolytic intermediate phosphoenolpyruvate (PEP) is a precursor of several cellular components, including various aromatic compounds. Modifications to the PEP node such as PEP:sugar phosphotransferase system (PTS) or pyruvate kinase inactivation have been shown to have a positive effect on aromatics production capacity in Escherichia coli and Bacillus subtilis. In this study, pyruvate kinase and PTS-deficient B. subtilis strains were employed for the construction of derivatives lacking shikimate kinase activity that accumulate two industrially valuable chemicals, the intermediates of the common aromatic pathway, shikimic and dehydroshikimic acids. The pyruvate kinase-deficient strain (CLC6-PYKA) showed the best production parameters under resting-cell conditions. Compared to the PTS-deficient strain, the shikimic and dehydroshikimic acids specific production rates for CLC6-PYKA were 1.8- and 1.7-fold higher, respectively. A batch fermentor culture using complex media supplemented with 83 g/l of glucose was developed with strain CLC6-PYKA, where final titers of 4.67 g/l (shikimic acid) and 6.2 g/l (dehydroshikimic acid) were produced after 42 h.
- Published
- 2013