51. Towards a Mobile Gait Analysis for Patients with a Spinal Cord Injury: A Robust Algorithm Validated for Slow Walking Speeds
- Author
-
Werner, Charlotte, Awai Easthope, Chris, Curt, Armin, Demkó, László, University of Zurich, and Werner, Charlotte
- Subjects
1303 Biochemistry ,610 Medicine & health ,TP1-1185 ,Walking ,3107 Atomic and Molecular Physics, and Optics ,1710 Information Systems ,Article ,rehabilitation ,Humans ,Gait ,Spinal Cord Injuries ,1602 Analytical Chemistry ,3105 Instrumentation ,2208 Electrical and Electronic Engineering ,Chemical technology ,clinical assessment ,IMU ,inertial sensors ,spinal cord injury ,Walking Speed ,wearables ,gait analysis ,e-health ,10046 Balgrist University Hospital, Swiss Spinal Cord Injury Center ,Gait analysis ,Inertial sensors ,Spinal cord injury ,Rehabilitation ,Clinical assessment ,Wearables ,human activities ,Algorithms - Abstract
Spinal cord injury (SCI) patients suffer from diverse gait deficits depending on the severity of their injury. Gait assessments can objectively track the progress during rehabilitation and support clinical decision making, but a comprehensive gait analysis requires far more complex setups and time-consuming protocols that are not feasible in the daily clinical routine. As using inertial sensors for mobile gait analysis has started to gain ground, this work aimed to develop a sensor-based gait analysis for the specific population of SCI patients that measures the spatio-temporal parameters of typical gait laboratories for day-to-day clinical applications. The proposed algorithm uses shank-mounted inertial sensors and personalized thresholds to detect steps and gait events according to the individual gait profiles. The method was validated in nine SCI patients and 17 healthy controls walking on an instrumented treadmill while wearing reflective markers for motion capture used as a gold standard. The sensor-based algorithm (i) performed similarly well for the two cohorts and (ii) is robust enough to cover the diverse gait deficits of SCI patients, from slow (0.3 m/s) to preferred walking speeds., Sensors, 21 (21), ISSN:1424-8220
- Published
- 2021
- Full Text
- View/download PDF