ガスケットは、静止固体面間における隙間の漏れを防ぐために、機械装置から生活用品の静的シールとして広く使用されている。液体の漏れは、隙間の高さの3乗に比例することから、基本的には隙間を狭める方策が採られる。通常、材料の弾性および塑性変形を用いることで防止される。その場合、しばしばクランプ力を増加させるが、過度のクランプ力は、表面の損傷を引き起こす可能性が高い。さらに、固体表面に存在する粗さやうねりのため、隙間を完全に埋めることは不可能である。一方で、液体の物性値に着目すると、温度が低いほど粘度が高くなる。漏れは液体の粘度に反比例する。よって、漏れの流路の温度を制御することで、漏れを抑え、ガスケットのシール性能を一段と高める可能性が考えられる。本研究では、その可能性を熱流体潤滑理論に基づく数値モデルとふたつの金属円板で構成させたフランジ・ガスケットのモデルによる実験により検証した。本論文は、全体で8章で構成される。第1章は序論である。静的および動的シールに関する概要をまとめ、数学モデルの基礎となる流体潤滑理論ならびに液体の粘度特性を概観し、ガスケットを中心に従来の研究のレビューならびに本研究の位置づけを述べている。第2章は理論モデルである。本数学モデルの基礎となる、熱流体潤滑理論に基づき、レイノルズ方程式、エネルギー方程式、熱伝導方程式などの基礎方程式ならびに圧力と温度の境界条件を導出している。また、等粘度理論との比較、数値計算方法、圧力や温度分布を示している。第3章は実験装置と方法である。2枚の金属製円板によるフランジ・ガスケットのモデルを述べている。ペルチェモジュールにより、その円板を冷却・加熱することにより、隙間を流れる液体の粘度を制御する装置の構成を示し、加圧や加振なども含めて、実験および計測の方法について述べている。第4章は定常状態下における実験結果である。隙間、供給圧力、シール面寸法、潤滑油の粘度グレード、隙間の傾斜の影響などについて述べている。第5章は加振条件下における実験結果である。加振条件の実験や計測の方法、加振の周波数や振幅に関する実験結果に加えて、振動条件下における傾斜隙間の計算結果などを述べている。第6章は湾曲したシール面の場合の数値結果である。理論計算により、凹凸面を呈する、温度制御されたシール面が漏れに及ぼす影響について述べている。第7章は実際のフランジガスケットを模擬した実験結果である。JIS規格のフランジにペルチェモジュールを装着し、シール面を垂直方向に設置し、加圧した潤滑油を供給する条件において、ガスケットを冷却することで漏れの効果を検証している。第8章は本論文の結論である。定常状態下はもとより、振動、寸法、潤滑油種、隙間形状、設置方法等によらず、フランジガスケットのシール面を冷却・加熱することにより、漏れを制御することができることを理論と実験の両面により検証することができたこと、ならびにその有効性や発展性を述べている。, Gaskets are widely used as static seals in industry, machinery, and living ware for preventing leakage between the static solid surfaces. Since leakage of fluid is proportional to the cube of gap height, the basic method for preventing leakage is taken to narrow the gap. Generally, leakage is decreased by using elastic and plastic deformation of material, which caused by the increased clamping force. However, excessive clamping force may lead to surface damage. Moreover, it is impossible to fill the gap completely because of the rough nature and waviness of the solid surfaces of gasket. On the other hand, according to the liquid physical characteristics in viscosity, leakage is inversely proportional to the lubricant viscosity, as lower temperatures correspond to higher viscosities. Therefore, it is possible to control the leakage by changing the temperature of sealing flanges to enhance the sealing performance of gasket further. In this dissertation, the possibility was confirmed by using the mathematical model based on the thermo-hydrodynamic lubrication theory (THL) and iso-viscous (IV) theory, and experiments with a flange-type gasket which composed of two metal disks. The dissertation consists of eight chapters in total. Chapter 1 is the introduction. It summarizes the outline of static and dynamic sealing, the overview of fluid lubrication theory and liquid viscosity characteristics that form the basics of mathematical models were shown. And it reviewed plenty of conventional studies focusing on gaskets, and described the position of this research. Chapter 2 is the theoretical model. The mathematical model is based on the thermo-hydrodynamic lubrication theory, the basic differential equations such as the Reynolds equation, the energy equation, and the heat conduction equation, as well as the boundary conditions of pressure and temperature are derived. The theoretical solution by using the THL theory was compared with the IV theory, the numerical calculation procedure, and the pressure and temperature distribution were shown. Chapter 3 is the experimental apparatus and method. The flange-type gasket model consists of two metal disks was depicted. The configuration of the experimental devices that controls the viscosity of the liquid flowing through the gap by cooling and heating the disk from the Peltier module was shown, and the experimental and measurement methods including pressurization and vibration were also described. Chapter 4 is the experimental results under steady-state condition. The effect of the gap height, supply pressure, sealing land size, oil viscosity grade, and gap parallelism on leakage of flow were described. Chapter 5 is the experimental results under the vibration condition. The experimental and measurement methods of the vibration conditions and the experimental results on the vibration frequency and amplitude, including the theoretical solutions of the inclined gap with vibrations were described. Chapter 6 is the numerical results for the curved sealing surface of flange. The effect of temperature-controlled sealing flange with uneven surfaces on leakage was solved by iteration calculation based on the THL theory. Chapter 7 is the experimental results simulating an actual flange-type gasket. The Peltier module was mounted on the JIS standard flange and the sealing surfaces were installed vertically. The leakage–restrain phenomenon was verified by cooling the gasket flanges under the condition of supplying bolt preload torque and pressurized lubricating oil. Chapter 8 is the conclusion of this dissertation. The leakage can be controlled by cooling and heating the sealing surface of the flange-type gasket regardless of vibration, sealing land size, oil viscosity grade, gap height, installation direction, etc., as well as under steady-state conditions. It verified that the leakage from gasket clearance can be effective controlled in both of theoretically and experimentally, which has effectiveness and development potential in society., 当アイテムは要旨のみの公開になっています(2023-5-23)