614 results on '"Ern, Alexandre"'
Search Results
602. Transport Linear Systems
- Author
-
Araki, H., editor, Brézin, E., editor, Ehlers, J., editor, Frisch, U., editor, Hepp, K., editor, Jaffe, R. L., editor, Kippenhahn, R., editor, Weidenmüller, H. A., editor, Wess, J., editor, Zittartz, J., editor, Beiglböck, W., editor, Ern, Alexandre, and Giovangigli, Vincent
- Published
- 1994
- Full Text
- View/download PDF
603. Invariant-domain-preserving high-order time stepping: I. Explicit Runge-Kutta schemes
- Author
-
Alexandre Ern, Jean-Luc Guermond, Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Department of Mathematics [Texas A&M University], Texas A&M University [College Station], This material is based upon work supported in part by the National Science Foundation via grants DMS2110868, the Air Force Oÿce of Scientific Research, USAF, under grant/contract number FA9550-18-1-0397, and by the Army Research Oÿce under grant/contract number W911NF-15-1-0517. The support of INIRIA through the International Chair program is acknowledged., and Ern, Alexandre
- Subjects
Hyperbolic systems ,Conservation equations ,High-order method ,Computational Mathematics ,Strong stability preserving ,Invariant domain preserving ,Applied Mathematics ,MSC. 35L65, 65M60, 65M12, 65N30 ,Time integration ,Runge-Kutta ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We introduce a technique that makes every explicit Runge--Kutta (ERK) time stepping method invariant-domain preserving and mass conservative when applied to high-order discretizations of the Cauchy problem associated with systems of nonlinear conservation equations. The key idea is that, at each stage of the ERK scheme, one computes a low-order update, a high-order update (both defined from the same intermediate stage using an incremental representation of the Butcher tableau), and then one applies a nonlinear mass conservative limiting operator. The main advantage over to the strong stability preserving (SSP) paradigm is more flexibility in the choice of the ERK scheme, thus allowing for a less stringent restriction on the time step. The technique is agnostic to the space discretization. It can be combined with continuous finite elements, discontinuous finite elements, finite volume, and finite difference discretizations in space. Numerical experiments are presented to illustrate the theory. In particular, we show second-order and third-order ERK schemes that outperform their SSP counterparts. We also show fifth-order ERK methods that are invariant-domain preserving, which is not possible within the SSP paradigm.
- Published
- 2021
604. Unstabilized hybrid high-order method for a class of degenerate convex minimization problems
- Author
-
Tran, Ngoc Tien, Carstensen, Carsten, Plecháč, Petr, and Ern, Alexandre
- Subjects
stress approximation ,adaptive mesh-refining algorithm ,Spannungsapproximation ,SK 660 ,510 Mathematik ,ddc:510 ,hybrid high-order ,adaptive Gitterverfeinerung ,convex minimization ,konvexe Minimierung - Abstract
Die Relaxation in der Variationsrechnung führt zu Minimierungsaufgaben mit einer quasi-konvexen Energiedichte. In der nichtlinearen Elastizität, Topologieoptimierung, oder bei Mehrphasenmodellen sind solche Energiedichten konvex mit einer zusätzlichen Kontrolle in der dualen Variablen und einem beidseitigem Wachstum der Ordnung $p$. Diese Minimierungsprobleme haben im Allgemeinen mehrere Lösungen, welche dennoch eine eindeutige Spannung $\sigma$ definieren. Die Approximation mit der „hybrid high-order“ (HHO) Methode benutzt eine Rekonstruktion des Gradienten in dem Raum der stückweisen Raviart-Thomas Finiten Elemente ohne Stabilisierung auf einer Triangulierung in Simplexen. Die Anwendung dieser Methode auf die Klasse der degenerierten, konvexen Minimierungsprobleme liefert eine eindeutig bestimmte, $H(\div)$ konforme Approximation $\sigma_h$ der Spannung. Die a priori Abschätzungen in dieser Arbeit gelten für gemischten Randbedingungen ohne weitere Voraussetzung an der primalen Variablen und erlauben es, Konvergenzraten bei glatten Lösungen vorherzusagen. Die a posteriori Analysis führt auf garantierte obere Fehlerschranken, eine berechenbare untere Energieschranke, sowie einen konvergenten adaptiven Algorithmus. Die numerischen Beispiele zeigen höhere Konvergenzraten mit zunehmenden Polynomgrad und bestätigen empirisch die superlineare Konvergenz der unteren Energieschranke. Obwohl der Fokus dieser Arbeit auf die nicht stabilisierte HHO Methode liegt, wird eine detaillierte Fehleranalysis für die stabilisierte Version mit einer Gradientenrekonstruktion im Raum der stückweisen Polynome präsentiert. The relaxation procedure in the calculus of variations leads to minimization problems with a quasi-convex energy density. In some problems of nonlinear elasticity, topology optimization, and multiphase models, the energy density is convex with some convexity control plus two-sided $p$-growth. The minimizers may be non-unique in the primal variable, but define a unique stress variable $\sigma$. The approximation by hybrid high-order (HHO) methods utilizes a reconstruction of the gradients in the space of piecewise Raviart-Thomas finite element functions without stabilization on a regular triangulation into simplices. The application of the HHO methodology to this class of degenerate convex minimization problems allows for a unique $H(\div)$ conform stress approximation $\sigma_h$. The a priori estimates for the stress error $\sigma - \sigma_h$ in the Lebesgue norm are established for mixed boundary conditions without additional assumptions on the primal variable and lead to convergence rates for smooth solutions. The a posteriori analysis provides guaranteed error control, including a computable lower energy bound, and a convergent adaptive scheme. Numerical benchmarks display higher convergence rates for higher polynomial degrees and provide empirical evidence for the superlinear convergence of the lower energy bound. Although the focus is on the unstabilized HHO method, a detailed error analysis is provided for the stabilized version with a gradient reconstruction in the space of piecewise polynomials.
- Published
- 2021
605. A vertex-based scheme on polyhedral meshes for advection–reaction equations with sub-mesh stabilization.
- Author
-
Cantin, Pierre, Bonelle, Jérôme, Burman, Erik, and Ern, Alexandre
- Subjects
- *
GEOMETRIC vertices , *NUMERICAL analysis , *ERROR analysis in mathematics , *APPROXIMATION theory , *ADVECTION , *POLYHEDRAL functions - Abstract
We devise and analyze vertex-based schemes on polyhedral meshes to approximate advection–reaction equations. Error estimates of order O ( h 3 / 2 ) are established in the discrete inf–sup stability norm which includes the mesh-dependent weighted advective derivative. The two key ingredients are a local polyhedral reconstruction map leaving affine polynomials invariant, and a local design of stabilization whereby gradient jumps are only penalized across some subfaces in the interior of each mesh cell. Numerical results are presented on three-dimensional polyhedral meshes. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
606. Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations
- Author
-
Milani, Riccardo, Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Université Paris-Est, Ern Alexandre, and Bonelle Jérôme
- Subjects
Condition inf-sup ,Schémas CDO ,Navier–Stokes ,Compressibilité Artificielle ,Convection ,Inf-sup condition ,Polyhedral meshes ,Maillages polyédriques ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Artificial Compressibility ,CDO schemes ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] - Abstract
We develop face-based Compatible Discrete Operator (CDO-Fb) schemes for the unsteady, incompressible Stokes and Navier–Stokes equations. We introduce operators discretizing the gradient, the divergence, and the convection term. It is proved that the discrete divergence operator allows one to recover a discrete inf-sup condition. Moreover, the discrete convection operator is dissipative, a paramount property for the energy balance. The scheme is first tested in the steady case on general and deformed meshes in order to highlight the flexibility and the robustness of the CDO-Fb discretization. The focus is then moved onto the time-stepping techniques. In particular, we analyze the classical monolithic approach, consisting in solving saddle-point problems, and the Artificial Compressibility (AC) method, which allows one to avoid such saddle-point systems at the cost of relaxing the mass balance. Three classic techniques for the treatment of the convection term are investigated: Picard iterations, the linearized convection and the explicit convection. Numerical results stemming from first-order and then from second-order time-schemes show that the AC method is an accurate and efficient alternative to the classical monolithic approach.; Nous développons des schémas dits face-based Compatible Discrete Operator (CDO-Fb) pour les équations de Stokes et Navier–Stokes incompressibles en régime instationnaire. Des opérateurs pour la reconstruction du gradient, de la divergence et un autre pour le terme de convection sont proposés. On montre que l’opérateur de divergence discret permet de satisfaire une condition inf-sup, tandis que l’opérateur de convection discret est dissipatif, propriété cruciale pour le bilan d’énergie. Le schéma de discrétisation est d’abord testé dans le cas stationnaire sur des maillages généraux mais aussi déformés, afin d’illustrer la flexibilité et la robustesse de la discrétisation CDO-Fb. Dans un deuxième temps, l’attention est placée sur les techniques de marche en temps. En particulier, nous étudions l’approche monolithique traditionnelle qui consiste à résoudre directement le système de point-selle, et la méthode de Compressibilité Artificielle (AC), qui permet de ne plus avoir un système de point-selle à résoudre au prix d’une relaxation du bilan de masse. Trois stratégies classiques pour le traitement du terme non linéaire dû à la convection sont examinées : l’algorithme de Picard, la linéarisation et l’explicitation. Des résultats numériques utilisant des schémas temporels du premier ordre d’abord, puis du deuxième ordre, montrent que la méthode AC constitue une alternative précise et efficace à l’approche monolithique traditionnelle.
- Published
- 2020
607. Concluding Remarks
- Author
-
Araki, H., editor, Brézin, E., editor, Ehlers, J., editor, Frisch, U., editor, Hepp, K., editor, Jaffe, R. L., editor, Kippenhahn, R., editor, Weidenmüller, H. A., editor, Wess, J., editor, Zittartz, J., editor, Beiglböck, W., editor, Ern, Alexandre, and Giovangigli, Vincent
- Published
- 1994
- Full Text
- View/download PDF
608. Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations
- Author
-
Alexandre Ern, Erik Burman, and Ern, Alexandre
- Subjects
Numerical Analysis ,Discretization ,Advection ,Time-dependent PDEs ,Applied Mathematics ,Mathematical analysis ,Implicit-explicit schemes ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,Space (mathematics) ,Stability (probability) ,Finite element method ,Error bounds ,Computational Mathematics ,Runge–Kutta methods ,Discontinuous Galerkin method ,Modeling and Simulation ,Convergence (routing) ,Stabilized finite elements ,QA ,Stability ,Analysis ,Mathematics - Abstract
We analyze a two-stage explicit-implicit Runge-Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on $L^2$-energy estimates on discrete functions in physical space. Our main results are stability and quasi-optimal error estimates for smooth solutions under a standard hyperbolic CFL restriction on the time step, both in the advection-dominated and in the diffusion-dominated regimes. The theory is illustrated by numerical examples.
- Published
- 2012
- Full Text
- View/download PDF
609. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations
- Author
-
Daniele Antonio Di Pietro, Alexandre Ern, and Ern, Alexandre
- Subjects
convergence ,Algebra and Number Theory ,Finite volume method ,Weak convergence ,Applied Mathematics ,Mathematical analysis ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,discrete gradient ,incompressible Navier-Stokes ,Sobolev embedding ,Finite element method ,Discrete system ,Sobolev space ,Computational Mathematics ,Discontinuous Galerkin method ,Piecewise ,compactness ,Galerkin method ,discontinuous Galerkin ,Mathematics - Abstract
Two discrete functional analysis tools are established for spaces of piecewise polynomial functions on general meshes: (i) a discrete counterpart of the continuous Sobolev embeddings, in both Hilbertian and non-Hilbertian settings; (ii) a compactness result for bounded sequences in a suitable Discontinuous Galerkin norm, together with a weak convergence property for some discrete gradients. The proofs rely on techniques inspired by the Finite Volume literature, which differ from those commonly used in Finite Element analysis. The discrete functional analysis tools are used to prove the convergence of Discontinuous Galerkin approximations of the steady incompressible Navier--Stokes equations. Two discrete convective trilinear forms are proposed, a non-conservative one relying on Temam's device to control the kinetic energy balance and a conservative one based on a nonstandard modification of the pressure.
- Published
- 2010
- Full Text
- View/download PDF
610. Décomposition de Hodge-Helmholtz discrète
- Author
-
Lemoine, Antoine, Institut de Mécanique et d'Ingénierie de Bordeaux (I2M), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Jean-Paul Caltagirone, Mejdi Azaïez, Caltagirone, Jean-Paul, Azaïez, Mejdi, Angot, Philippe, Mieussens, Luc, Vincent, Stéphane, Bonelle, Jérôme, Ern, Alexandre, Perrier, Valérie, Rapetti, Francesca, STAR, ABES, Alexandre Ern [Président], Valérie Perrier [Rapporteur], Francesca Rapetti [Rapporteur], Philippe Angot, Luc Mieussens, Stéphane Vincent, and Jérôme Bonelle
- Subjects
Décomposition de Hodge-Helmholtz discrète ,Compatible discrete operators ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,Coherent structures detection ,Polyhedral meshes ,Schémas mimétiques ,Vector fields analysis ,Schémas discrets compatibles ,Mimetic schemes ,Discrete Helmholtz-Hodge decomposition ,Détection de structures cohérentes ,[PHYS.MECA] Physics [physics]/Mechanics [physics] ,Analyse de champs de vecteurs ,Maillages polyédriques - Abstract
We propose in this thesis a methodology to compute the Helmholtz-Hodge decomposition on discrete polyhedral meshes. The challenge of this work isto preserve the properties of the decomposition at the discrete level. In our literature survey, we have identified the need of mimetic schemes to achieve our goal. The description and validation of our implementation of these schemes are presented inthis document. We revisit and improve the methods of decomposition we then study through numerical experiments. In particular, we detail our choice of linear solvers and the convergence of extracted quantities on various series of polyhedral meshes and boundary conditions. Finally, we apply the Helmholtz-Hodge decomposition to the study of two turbulent flows: a turbulent channel flow and a homogeneous isotropic turbulent flow., Nous proposons dans ce mémoire de thèse une méthodologie permettant la résolution du problème de la décomposition de Hodge-Helmholtz discrète sur maillages polyédriques. Le défi de ce travail consiste à respecter les propriétés de la décomposition au niveau discret. Pour répondre à cet objectif, nous menons une étude bibliographique nous permettant d'identifier la nécessité de la mise en oeuvre de schémas numériques mimétiques. La description ainsi que la validation de la mise en oeuvre de ces schémas sont présentées dans ce mémoire. Nous revisitons et améliorons les méthodes de décomposition que nous étudions ensuite au travers d'expériences numériques. En particulier, nous détaillons le choix d'un solveur linéaire ainsi que la convergence des quantités extraites sur un ensemble varié de maillages polyédriques et de conditions aux limites. Nous appliquons finalement la décomposition de Hodge-Helmholtz à l'étude de deux écoulements turbulents : un écoulement en canal plan et un écoulement turbulent homogène isotrope.
- Published
- 2014
611. Weighting the edge stabilization
- Author
-
Alexandre Ern, Jean-Luc Guermond, Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Department of Mathematics and Statistics [Texas Tech], Texas Tech University [Lubbock] (TTU), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), and Ern, Alexandre
- Subjects
Numerical Analysis ,Mathematical optimization ,Conservation equations ,Applied Mathematics ,Mathematics::Optimization and Control ,010103 numerical & computational mathematics ,linear stabilization ,Edge (geometry) ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,01 natural sciences ,Finite element method ,Statistics::Computation ,Weighting ,010101 applied mathematics ,65M12 ,35L65 ,65M60 ,Computational Mathematics ,nonlinear viscosity ,Convergence (routing) ,finite elements ,conservation equations ,Numerical tests ,0101 mathematics ,edge stabilization ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
A modification of the edge stabilization technique is proposed to improve the behavior of the method when solving conservation equations with non-smooth data and/or non-smooth solutions. The key ingredient is tempering the edge stabilization in regions of large gradients through appropriate weights. The new method is shown to preserve the convergence properties of the original method on smooth solutions and numerical tests indicate that it performs better on non-smooth solutions.
- Published
- 2012
612. Adaptive Anisotropic Spectral Stochastic Methods for Uncertain Scalar Conservation Laws
- Author
-
Alexandre Ern, Olivier Le Maitre, Julie Tryoen, Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), and Ern, Alexandre
- Subjects
Mathematical optimization ,Discretization ,uncertainty quantification ,MathematicsofComputing_NUMERICALANALYSIS ,010103 numerical & computational mathematics ,Stochastic approximation ,01 natural sciences ,stochastic spectral method ,adaptivity ,Finite-dimensional distribution ,Galerkin projection ,0101 mathematics ,Mathematics ,Stochastic control ,Conservation law ,Applied Mathematics ,stochastic multiresolution ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,010101 applied mathematics ,Computational Mathematics ,Local time ,Piecewise ,Stochastic optimization ,conservation laws ,hyperbolic systems ,60H35, 60H15, 65C20, 68U20 ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
This paper deals with the design of adaptive anisotropic discretization schemes for conservation laws with stochastic parameters. A Finite Volume scheme is used for the deterministic discretization, while a piecewise polynomial representation is used at the stochastic level. The methodology is designed in the context of intrusive Galerkin projection methods with Roe-type solver. The adaptation aims at selecting the stochastic resolution level based on the local smoothness of the solution in the stochastic domain. In addition, the stochastic features of the solution greatly vary in the space and time so that the constructed stochastic approximation space depends on space and time. The dynamically evolving stochastic discretization uses a tree-structure representation that allows for the efficient implementation of the various operators needed to perform anisotropic multiresolution analysis. Efficiency of the overall adaptive scheme is assessed on the stochastic traffic equation with uncertain initial conditions and velocity leading to expansion waves and shocks that propagate with random velocities. Numerical tests highlight the computational savings achieved as well as the benefit of using anisotropic discretizations in view of dealing with problems involving a larger number of stochastic parameters.
- Published
- 2012
613. Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem
- Author
-
Alexandre Ern, David Doyen, and Ern, Alexandre
- Subjects
convergence ,65N30 ,Applied Mathematics ,General Mathematics ,74M15 ,Mathematical analysis ,Unilateral contact ,65P99 ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,modified mass method ,Space (mathematics) ,Finite element method ,Term (time) ,Dynamic Signorini problem ,Compact space ,Convergence (routing) ,finite elements ,compactness ,46N40 ,Signorini problem ,74S05 ,visco-elastic material ,Mathematics ,unilateral contact - Abstract
A new space semi-discretization for the dynamic Signorini problem, based on a modification of the mass term, has been recently proposed. We prove the convergence of the space semi-discrete solutions to a solution of the continuous problem in the case of a visco-elastic material.
- Published
- 2009
614. Schéma ADER sur des Maillages Overset avec Transmission Compacte et Hyper-réduction : Application aux Équations de Navier-Stokes Incompressibles
- Author
-
CARLINO, Michele Giuliano, Bergmann, Michel, Iollo, Angelo, Dumbser, Michaël, Ern, Alexandre, Vignal, Marie-Hélène, and Loubère, Raphaël
- Subjects
Modèles Reduits ,Hyper-Réduction ,Navier-Stokes incompressible ,Ader ,Transmission compacte ,Maillage Overset
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.