551. Revisiting the formation of cyclic clusters in liquid ethanol.
- Author
-
Balanay MP, Kim DH, and Fan H
- Abstract
The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with (1)H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. In liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (∼14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, (1)H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.
- Published
- 2016
- Full Text
- View/download PDF