651. Interactions between vegetation development and island formation in the Alpine river Tagliamento
- Author
-
M. Vieli, Johannes Kollmann, P. J. Edwards, James V. Ward, and Klement Tockner
- Subjects
Alnus incana ,Ecology ,biology ,Large woody debris ,Vegetation ,Ecological succession ,Management, Monitoring, Policy and Law ,biology.organism_classification ,Habitat ,Dendrochronology ,Erosion ,Geology ,Nature and Landscape Conservation ,Global biodiversity - Abstract
Early-successional stages of woody vegetation on gravel bars were studied in an island-braided section of the River Tagliamento in northeastern Italy. We mapped landscape-level changes in the study area (125 ha) by GIS-based analysis of aerial photographs for two time periods (1984–1986, 1986–1991); we surveyed island vegetation, and estimated island age by tree ring analysis. The study area experienced considerable changes between 1984 and 1991 due to at least two major floods in 1987 and 1990. The development of woody vegetation on bars follows three distinct phases: (1) gravel bars plus large woody debris (LWD), (2) pioneer islands, and (3) established islands. Established islands have sections dominated by shrubs of Salix elaeagnos, S. purpurea, S. daphnoides and S. triandra, and tree-dominated sections with Populus nigra, Salix alba and Alnus incana. Large woody debris seems to play a key role for plant colonization on gravel bars. The succession from bars to established islands took about 10 - 20 yr, and the probability of an island being washed away decreased with island age. Erosion produced new LWD which again initiated successional processes in the active zone of the river. Most species were already present in the early-successional stages, although the number of species increased with island development. Established islands were characterized by a distinctive species composition, including an assemblage of species less tolerant of inundation. The results are discussed within the framework of island dynamics and its significance for restoration of early-successional habitats in more regulated rivers.