701. High- and low-frequency mechanical properties of living starfish oocytes.
- Author
-
Pesce G, Selvaggi L, Rusciano G, and Sasso A
- Subjects
- Animals, Asterina physiology, Biomechanical Phenomena, Elastic Modulus, Lasers, Rheology, Species Specificity, Time Factors, Viscosity, Asterina cytology, Mechanical Phenomena, Oocytes
- Abstract
We studied the mechanical properties of living starfish oocytes belonging to two species, Astropecten Auranciacus and Asterina pectinifera, over a wide range of timescales. We monitored the Brownian motion of microspheres injected in the cytoplasm using laser particle-tracking (LPT) and video multiple-particle-tracking (MPT) techniques, to explore high- and low-frequency response ranges, respectively. The analysis of the mean-square-displacements (MSD) allowed us to characterize the samples on different timescales. The MSD behavior is explained by three power-law exponents: for short times (τ < 1 ms) it reflects the semiflexible behavior of the actin network; for intermediate timescales (1 ms < τ < 1 s) it is similar to that of a soft-glass material; finally for long times (τ > 1 s) it behaves mainly like a viscous medium. We computed and compared the viscoelastic moduli using a recently proposed model describing the frequency response of the cell material. The large fluctuations found in the MSD over hundreds of trajectories indicate and confirm the significant cytoplasm heterogeneity., (Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2011
- Full Text
- View/download PDF