701. Functional analysis of the involvement of apurinic/apyrimidinic endonuclease 1 in the resistance to melphalan in multiple myeloma
- Author
-
Zeng-Peng Li, Mengxia Li, Jia Du, Ge Wang, Lin-Li Zeng, Liwei Zhou, Liang Zhang, Dong Wang, Senlin Yang, and Jiayin Xie
- Subjects
Melphalan ,Cancer Research ,ATP Binding Cassette Transporter, Subfamily B ,Time Factors ,DNA Repair ,DNA repair ,Biology ,Transfection ,Gene Expression Regulation, Enzymologic ,AP endonuclease ,Human apurinic/apyrimidinic endonuclease 1 ,Endonuclease ,Multiple myeloma ,Multidrug Resistance Protein 1 ,immune system diseases ,Cell Line, Tumor ,hemic and lymphatic diseases ,Acquired melphalan resistance ,DNA-(Apurinic or Apyrimidinic Site) Lyase ,medicine ,Genetics ,Humans ,AP site ,ATP Binding Cassette Transporter, Subfamily B, Member 1 ,cardiovascular diseases ,Antineoplastic Agents, Alkylating ,neoplasms ,Base excision repair ,Dose-Response Relationship, Drug ,Acetylation ,Molecular biology ,DNA-(apurinic or apyrimidinic site) lyase ,Up-Regulation ,Gene Expression Regulation, Neoplastic ,Oncology ,Drug Resistance, Neoplasm ,Mutation ,biology.protein ,RNA Interference ,Oxidation-Reduction ,Research Article ,medicine.drug - Abstract
Background Melphalan resistance has been considered one of the major obstacles to improve outcomes in multiple myeloma (MM) therapy; unfortunately, the mechanistic details of this resistance remain unclear. Melphalan is a highly effective alkylating agent which causes many types of DNA lesions, including DNA base alkylation damage that is repaired by base excision repair (BER). We postulated that human apurinic/apyrimidinic endonuclease 1 (APE1), an essential BER enzyme, plays a vital role in acquired melphalan resistance. However, because APE1 is a multifunctional protein with redox activity and acetylation modification in addition to its major repair activity, the particular APE1 function that may play a more important role in melphalan resistance is unknown. Methods Two MM cell lines, RPMI-8226 and U266 were used to measure the difference in APE1 levels in melphalan-resistant and sensitive derivatives. APE1 functional mutants for DNA repair, redox and acetylation were employed to investigate the roles of individual APE1 activities in acquired melphalan resistance. Results Our results indicate that APE1 is overexpressed in both MM melphalan-resistant cells. Knocking down APE1 sensitizes the melphalan resistant MM cells to melphalan treatment. The exogenous expression of DNA repair mutant H309N and acetylation mutant K6R/K7R of APE1 failed to restore the melphalan resistance of the APE1 knockdown RPMI-8226 cells. The AP endonuclease activity and multidrug resistance protein 1 (MDR1) regulatory activity may play roles in the melphalan resistance of MM cells. Conclusions The present study has identified that the DNA repair functions and the acetylation modification of APE1 are involved in melphalan resistance of MM cells and has also shed light on future therapeutic strategies targeting specific APE1 functions by small molecule inhibitors.
- Full Text
- View/download PDF