Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS., {"references":["B. A. Orser, Depth of anesthesia monitor and the frequency of intraoperative\nawareness, The New England Journal of Medicine, vol. 358, 2008,\npp. 1189-1191.","H.L. Kaul, N. Bharti, Monitoring depth of anesthesia, Indian J. Anesth.,\nvol. 46, 2002, pp. 323-332.","L. Shao-hua, W. Wei, D. Guan-nan, K. Jing-dong, H. Fang-xiao, T. Ming,\nRelationship between depth of anesthesia and effect-site concentration of\npropofol during induction with the target-controlled infusion technique in\nelderly patients, Chinese Medical Journal, vol. 122, 2009, pp. 935-940.","P. S. Sebel, T. A. Bowdle, M. M. Ghoneim, I. J. Rampil, R. E. Padilla, T.\nJ. Gan, and K. B. Domino, The incidence of awareness during anesthesia:\nA multicenter United States study, Anesth. Analgesia, vol. 99, 2004, pp.\n833-839.","D. R. Stanski, Monitoring depth of anesthesia, in Anesthesia, R. D. Miller,\nEd. Anesthesia, (Churchill Livingstone, New York, 1994, pp. 1127-1159).","E. W. Jensen, P. Lindholm, and S. Henneberg, Autoregressive modeling\nwith exogenous input of middle-latency auditory-evoked potentials to\nmeasure rapid changes in depth of anaesthesia, Meth. Inf. Med. vol. 35,\n1996, pp. 256-260.","H. Litvan, E. W. Jensen, J. Galan, J. Lund, B. E. Rodriguez, S. W.\nHenneberg, P. Caminal, and J. M. Villar Landeira, Comparison of\nconventional averaged and rapid averaged, autoregressive-based extracted\nauditory evoked potentials for monitoring the hypnotic level during\npropofol induction, Anesthesiology, vol. 97, 2002, pp. 351-358.","J. Rampil, A primer for EEG signal processing in anesthesia, Anesthesiology,\nvol. 89, 1998, pp. 981-1001.","J. C. Sigl and N. G. Chamoun, An introduction to Bispectral analysis\nfor the EEG, Journal of Clinical Monitoring and Computing Springer\nNetherlands, vol. 10, 1994, pp. 392-404.\n[10] P.Ch. Ivanov, A.N. Amaral, Lus, A.L. Goldberger, S. Havlin, M.G.\nRosenblum, Z.R. Struzik, H.E. Stanley, Multifractality in human heartbeat\ndynamics, Nature. vol. 399, 1999, pp. 461-465.\n[11] D. Garrett, D. A. Peterson, C. W. Anderson, M. H. Thaut, Comparison\nof Linear, Nonlinear, and Feature Selection Methods for EEG Signal\nClassification, IEEE Trans. neural systems and rehabilitation engineering,\nvol. 11, 2003, pp. 141-144.\n[12] P. Flandrin, Time-Frequency or Time-Scale Analysis, Academic Press,\nLondon, 1999.\n[13] F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic timefrequency\nsignal representations, IEEE Signal Process. Mag., vol. 9, 1992,\npp. 21-67.\n[14] T. W. Schnider, C. F. Minto, S. L. Shafer, P. L. Gambus, C. Andresen,\nD. B. Goodale, and E. J. Youngs, The influence of age on propofol\npharmacodynamics, Anesthesiology, vol. 90, 1999, pp. 1502-1516.\n[15] S. L. Shafer and K. M. Gregg, Algorithms to rapidly achieve and\nmaintain stable drug concentrations at the site of drug effect with a\ncomputer- controlled infusion pump, Journal of Pharmacokinetics and\nPharmacodynamics, Springer, vol. 20, 1992, pp. 147-169.\n[16] M. M. R. F. Struys, T. De Smet, B. Depoorter, L. F. Versichelen, E.\nP. Mortier, F. J. Dumortier, S. L. Shafer, and G. Rolly, Comparison\nof plasma compartment versus two methods for effect compartmentcontrolled\ntarget-controlled infusion for propofol, Anesthesiology, vol.\n92, 2000, pp. 399-406.\n[17] Vigon L, Saatchi M R, Mayhew J E W and Fernandes R, Quantitative\nevaluation of techniques for ocular artifact filtering of EEG waveforms,\nIEE Proceedings on Science Measurement Technology, vol. 147, n.5, Sep\n2000.\n[18] Girton D G, Kamiya J, A simple on-line technique for removing eye\nmovement artifacts from the EEG, Electroencephalography and Clinical\nNeurophysiology, vol. 34, pp. 212-216, 1973.\n[19] V. J. Samar, A. Bopardikar, R. Rao, Kenneth Swartz, Wavelet Analysis\nof Neuroelectric waveforms: A Conceptual Tutorial, Brain and Laguage,\nvol. 66, 1999, pp. 7-60.\n[20] T Gasser, L Sroka and J Mocks, The transfer of EOG activity into\nthe EEG for eyes open and closed, Electroencephalography and clinical\nneurophysiology, vol. 61, 1985, pp. 181-193.\n[21] http://www.xploretat.de/tutorials/waveframe8.html\n[22] V. krishnaveni, S. jayaraman, N. malmurugan, A. kandaswamy, K. ramadoss,\nNon adaptive thresholding methods for correcting ocular artifacts\nin EEG, academic open internet journal, vol. 13, 2004.\n[23] M. Nakamura, H. Shibasaki, Elimination of EKG artifacts from EEG\nrecords: a new method of noncephalic referential EEG recording Electroencephalogr,\nClin. Neurophys. vol. 66, 1987, pp. 89-92.\n[24] H.J. Park, D.U. Jeong, K.S. Park, Automated detection and elimination\nof periodic ECG artifacts in EEG using the energy interval histogram\nmethod, IEEE Trans. Biomed. Eng. vol. 49 n.12, 2002, pp.1526-1533.\n[25] N.V. Thakor, J.G. Webster, W.J. Tompkins, Estimation of QRS complex\npower spectra for design of a QRS filter, IEEE Trans. Biomed. Eng. vol.\n31, 1984, pp. 702-705.\n[26] J. A. Jiang, C. F. Chao, M. J. Chiu, R. G. Lee, C. L. Tseng, R. Lin, An\nautomatic analysis method for detecting and eliminating ECG artifacts\nin EEG, Computers in Biology and Medicine, vol. 37, 2007, pp. 1660 -\n1671.\n[27] H. A. Al-Nashash, J. S. Paul, N. V. Thakor, Wavelet entropy Method\nfor EEG Analysis: Application to Global Brain Injury, 1st International\nIEEE EMBS Conf. on Neural Engineering, Capri Island, Italy, 2003, pp.\n348-351.\n[28] M. Mikaili, S. Hashemi, Assesment of the complexity/regularity of\ntransient brain waves (EEG) during sleep, based on wavelet theory and\nthe concept of of entropy, Iranian J. of science and Technology, vol. 26,\npp.639-646, 2002.\n[29] O. A. Rosso, S. Blanco, A. Rabinowicz, \"Wavelet analysis of generalized\ntonic-clonic epileptic seizures,\" Signal Processing, vol. 83 n.6, June 2003,\npp. 1275-1289.\n[30] R. Hornero, D. E. Abasolo, P. Espino, \"Use of wavelet entropy to\ncompare the EEG background activity of epileptic patients and control\npatients,\" in Proc. 7th International Symposium, vol. 2, 2003, pp. 5-8.\n[31] T. Zikov, S. Bibian, G. A. Dumont, M. Huzmezan,C. R. Ries, Quantifying\nCortical Activity During General Anesthesia Using Wavelet Analysis,\nIEEE Trans. On biomedical engineering, vol. 53, April 2006."]}