601. Covalent adduct formation between the plasmalogen-derived modification product 2-chlorohexadecanal and phloretin.
- Author
-
Üllen A, Nusshold C, Glasnov T, Saf R, Cantillo D, Eibinger G, Reicher H, Fauler G, Bernhart E, Hallstrom S, Kogelnik N, Zangger K, Oliver Kappe C, Malle E, and Sattler W
- Subjects
- Aldehydes chemistry, Aldehydes pharmacology, Animals, Blood-Brain Barrier drug effects, Cells, Cultured, Endothelium, Vascular drug effects, Male, Mice, Mice, Inbred C57BL, Phloretin chemistry, Phloretin pharmacology, Plasmalogens chemistry, Plasmalogens pharmacology, Sheep, Swine, Aldehydes metabolism, Blood-Brain Barrier metabolism, Endothelium, Vascular metabolism, Phloretin metabolism, Plasmalogens metabolism
- Abstract
Hypochlorous acid added as reagent or generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system oxidatively modifies brain ether-phospholipids (plasmalogens). This reaction generates a sn2-acyl-lysophospholipid and chlorinated fatty aldehydes. 2-Chlorohexadecanal (2-ClHDA), a prototypic member of chlorinated long-chain fatty aldehydes, has potent neurotoxic potential by inflicting blood-brain barrier (BBB) damage. During earlier studies we could show that the dihydrochalcone-type polyphenol phloretin attenuated 2-ClHDA-induced BBB dysfunction. To clarify the underlying mechanism(s) we now investigated the possibility of covalent adduct formation between 2-ClHDA and phloretin. Coincubation of 2-ClHDA and phloretin in phosphatidylcholine liposomes revealed a half-life of 2-ClHDA of approx. 120min, decaying at a rate of 5.9×10(-3)min(-1). NMR studies and enthalpy calculations suggested that 2-ClHDA-phloretin adduct formation occurs via electrophilic aromatic substitution followed by hemiacetal formation on the A-ring of phloretin. Adduct characterization by high-resolution mass spectroscopy confirmed these results. In contrast to 2-ClHDA, the covalent 2-ClHDA-phloretin adduct was without adverse effects on MTT reduction (an indicator for metabolic activity), cellular adenine nucleotide content, and barrier function of brain microvascular endothelial cells (BMVEC). Of note, 2-ClHDA-phloretin adduct formation was also observed in BMVEC cultures. Intraperitoneal application and subsequent GC-MS analysis of brain lipid extracts revealed that phloretin is able to penetrate the BBB of C57BL/6J mice. Data of the present study indicate that phloretin scavenges 2-ClHDA, thereby attenuating 2-ClHDA-mediated brain endothelial cell dysfunction. We here identify a detoxification pathway for a prototypic chlorinated fatty aldehyde (generated via the MPO axis) that compromises BBB function in vitro and in vivo., (Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF