318 results on '"Kemmerling, G"'
Search Results
302. Properties of the neutron detector based on ionisation chamber with 6Li converters.
- Author
-
Engels, R., Clemens, U., Kemmerling, G., and Schelten, J.
- Published
- 2004
- Full Text
- View/download PDF
303. Neutron detection experiments with ionisation counter and 6Li converter.
- Author
-
Schelten, J., Engels, R., Clemens, U., and Kemmerling, G.
- Published
- 2003
- Full Text
- View/download PDF
304. Comparison of LuYAP, LSO and BGO as scintillators for high resolution PET detectors.
- Author
-
Weber, S., Christ, D., Kurzeja, M., Engels, R., Kemmerling, G., and Halling, H.
- Published
- 2002
- Full Text
- View/download PDF
305. Detection properties of a neutron counter based on scintillator, wavelength shifter, and photomultiplier.
- Author
-
Engels, R., Kemmerling, G., Cooper, R., and Schelten, J.
- Published
- 2002
- Full Text
- View/download PDF
306. A system for multiplexed chip readout of double-sided silicon detectors.
- Author
-
Clemens, U., Erven, W., Gorke, H., Kemmerling, G., Maeckelburg, D., Merzliakov, S., Mussgiller, A., Schleichert, R., and Zwoll, K.
- Published
- 2002
- Full Text
- View/download PDF
307. Comparison of neutron scintillation detectors with a 3He proportional counter for the Spallation Neutron Source, SNS.
- Author
-
Engels, R., Kemmerling, G., Rongen, H., Schelten, J., and Cooper, R.
- Published
- 2001
- Full Text
- View/download PDF
308. Upgrade of the TEXTOR-94 data acquisition system for plasma diagnostics.
- Author
-
Korten, M., Becks, B., and Kemmerling, G.
- Published
- 1998
- Full Text
- View/download PDF
309. Response of a Li-glass/multi-anode photomultiplier detector to [formula omitted]-particles from 241Am.
- Author
-
Rofors, E., Perrey, H., Al Jebali, R., Annand, J.R.M., Boyd, L., Clemens, U., Desert, S., Engels, R., Fissum, K.G., Frielinghaus, H., Gheorghe, C., Hall-Wilton, R., Jaksch, S., Jalgén, A., Kanaki, K., Kemmerling, G., Maulerova, V., Mauritzson, N., Montgomery, R., and Scherzinger, J.
- Subjects
- *
GLASS-ceramics , *DETECTORS , *NEUTRON counters , *PIXELS , *THERMAL neutrons , *SCINTILLATORS - Abstract
The response of a position-sensitive Li-glass scintillator detector to α -particles from a collimated 241Am source scanned across the face of the detector has been measured. Scintillation light was read out by an 8 × 8 pixel multi-anode photomultiplier and the signal amplitude for each pixel has been recorded for every position on a scan. The pixel signal is strongly dependent on position and in general several pixels will register a signal (a hit) above a given threshold. The effect of this threshold on hit multiplicity is studied, with a view to optimize the single-hit efficiency of the detector. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
310. Response of a Li-glass/multi-anode photomultiplier detector to collimated thermal-neutron beams.
- Author
-
Rofors, E., Mauritzson, N., Perrey, H., Al Jebali, R., Annand, J.R.M., Boyd, L., Christensen, M.J., Clemens, U., Desert, S., Engels, R., Fissum, K.G., Frielinghaus, H., Gheorghe, C., Hall-Wilton, R., Jaksch, S., Kanaki, K., Kazi, S., Kemmerling, G., Llamas Jansa, I., and Maulerova, V.
- Subjects
- *
THERMAL neutrons , *SCINTILLATORS , *DETECTORS , *NEUTRON beams , *PHOTOMULTIPLIERS , *PIXELS - Abstract
The response of a position-sensitive Li-glass scintillator detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using collimated beams of thermal neutrons. The detector was moved perpendicularly through the neutron beams in 0.5 to 1.0 mm horizontal and vertical steps. Scintillation was detected in an 8 × 8 pixel multi-anode photomultiplier tube on an event-by-event basis. In general, several pixels registered large signals at each neutron-beam location. The number of pixels registering signal above a set threshold was investigated, with the maximization of the single-hit efficiency over the largest possible area of the detector as the primary goal. At a threshold of ∼ 50% of the mean of the full-deposition peak, ∼ 80% of the events were registered in a single pixel, resulting in an effective position resolution of ∼ 5 mm in X and Y. Lower thresholds generally resulted in events demonstrating higher pixel multiplicities, but these events could also be localized with ∼ 5 mm position resolution. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
311. Response of a Li-glass/multi-anode photomultiplier detector to focused proton and deuteron beams.
- Author
-
Rofors, E., Pallon, J., Al Jebali, R., Annand, J.R.M., Boyd, L., Christensen, M.J., Clemens, U., Desert, S., Elfman, M., Engels, R., Fissum, K.G., Frielinghaus, H., Frost, R., Gardner, S., Gheorghe, C., Hall-Wilton, R., Jaksch, S., Kanaki, K., Kemmerling, G., and Kristiansson, P.
- Subjects
- *
PROTON beams , *THERMAL neutrons , *DETECTORS , *SCINTILLATION counters , *PHOTOMULTIPLIERS , *PIXELS - Abstract
The response of a position-sensitive Li-glass based scintillation detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using focused beams of 2.5 MeV protons and deuterons. The beams were scanned across the detector in 0.5 mm horizontal and vertical steps perpendicular to the beams. Scintillation light was registered using an 8 × 8 pixel multi-anode photomultiplier tube. The signal amplitudes were recorded for each pixel on an event-by-event basis. Several pixels generally registered considerable signals at each beam location. To optimize planned detector operation at the European Spallation Source, the number of pixels above set thresholds was investigated, with the maximization of the single-hit efficiency over the largest possible area as the primary goal. For both beams, at a threshold of ∼ 50% of the mean of the full-deposition peak, ∼ 80% of the events were registered in a single pixel, resulting in an effective position resolution of ∼ 5 mm in X and Y. Lower thresholds resulted in higher pixel multiplicities. These events could also be localized with the same effective position resolution. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
312. Experimental access to Transition Distribution Amplitudes with the P̄ANDA experiment at FAIR
- Author
-
M. C. Mora Espí, Pawel Marciniewski, K. Makonyi, Yupeng Yan, S. Wronka, D. Pietreanu, Shaji Kumar, N. Belikov, D. I. Glazier, A. Gillitzer, K. Khanchai, Ajay Kumar Rai, M. Steinen, D. Calvo, Yury Tikhonov, A. A. Derevschikov, T. A. Pocheptsov, R.A. Salmin, P. Balanutsa, B. J. Liu, P. N. Deepak, A. E. Blinov, S. Lange, S. Ryzhikov, G. Kalicy, Arpit Parmar, P. Musiol, G. D. Alexeev, D. P. Watts, Lennart Isaksson, Tobias Stockmanns, E. Gutz, P. F. Dalpiaz, Zhi Liu, D. Marchand, S. Grieser, A. Gerhardt, D. Kangh, L. Fava, A. A. Festchenko, Harphool Kumawat, I. Zimmermann, M. Albrecht, B. Krusche, A. Sanchez Lorente, E. A. Strokovsky, M. A. Pasyuk, J. Ritman, P. C. Vinodkumar, T. Quagli, M.G. Sapozhnikov, Ashok Kumar, Herbert Koch, V. I. Astakhov, V. Serdyuk, K. M. von Würtemberg, D. Münchow, Hans-Georg Zaunick, S. Marcello, M. Ullrich, A. Mustafa, Paola Gianotti, T. Kuske, Michaela Thiel, Kamal K. Seth, S. Schlimme, C. Schwarz, M. Savrie, B. Ketzer, Jerzy Smyrski, E. Etzelmüller, A. G. Fedunov, H. Sohlbach, K. Malgorzata, Victor Bobrovnikov, R.Sh. Teshev, L. Ayut, V.M. Abazov, B. Spruck, B. Kamys, D. Mülhheim, Krzysztof Swientek, S. Schadmand, M. V. Korzihik, Zbigniew Rudy, Matei Eugen Vasile, T. Wasem, J. Schwiening, D. Lehmann, M. Patsyuk, Karin Schönning, W. Czyzycki, M. Zühlsdorf, V. N. Goryachev, A. G. Zorin, A. Davidenko, W. Lauth, B. Fröhlich, A. Amoroso, V. Lucherini, P. Schakel, Grzegorz Korcyl, G.A. Mustafaev, Smbat Grigoryan, Ajit Kumar Mohanty, Grzegorz Filo, R. Veenstra, P. Wüstner, J. Marton, Boris Batyunya, L. Ferrero, A. N. Skachkova, Edward Lisowski, I. Garzia, D. Bremer, T. Eissner, D. Lin, Y.M. Goncharenko, Soumen Paul, A.A. Efremov, Dipanwita Dutta, Alberto Rotondi, M. Michel, B. Slowinski, A. Arefiev, Philip Woods, I. Augustin, Yan Liang, A. Karavdina, M. Greco, P. Rosier, Antoni Szczurek, N. Saito, K. Föhl, T. Schröder, B. Singh, Mariana Nanova, Andreas Herten, Oleg V. Missevitch, S.A. Zaporozhets, K.-T. Brinkmann, Sukanta Dash, A. Filippi, A. Trzcinski, Marek Idzik, M. O. Distler, J. Schumann, C. Sowa, I. Konorov, J. C. van der Weele, Mathias Fink, A. E. Yakutin, B. Kopf, E. Atomssa, A. Pitka, R. Karabowicz, H. H. Leithoff, Angelo Rivetti, S. Pornrad, S. Diehl, M. Maggiora, B. Kröck, R. Duchat, O. Levitskaya, Gianluigi Boca, Krzysztof Korcyl, Gianangelo Bracco, Harald Kleines, F. Nerling, L. Caldeira Balkeståhl, S. Coli, E. Perevalova, T. Gessler, Klaus Peters, A. Magiera, Vassili Kachanov, M. Hawryluk, S. Ong, R. Varma, X. Shen, T. Czyzewski, M. Domagala, S. Godre, M. Zyzak, J. Pettersson, F. Uhlig, F. De Mori, P.J.J. Lemmens, Alexander D. Vasiliev, Mohammed Al-Turany, Q. Hu, Andrzej Kupsc, R. Schmitz, P. Mahlberg, P. De Remigis, C. Schnier, S. Lusso, R. Dosdall, L. Zotti, J. Van de Wiele, A. Britting, S. Fissum, Zhigang Li, Jozef Zlomanczuk, Amiran Tomaradze, S. Spataro, U. Müller, R. Valente, V. Uzhinsky, Giulio Stancari, G. S. Shabratova, I. Keshelashvili, S. Jowzaee, Harald Merkel, C. Guaraldo, S. Li, Christian Schmidt, M. Steinacher, V. Kozlov, Yu.N. Rogov, A. Bianconi, T. Held, V. Datar, Andrei Fedorov, H. Orth, T. Weber, A. Kozela, Piotr Salabura, M. Destefanis, Andrea Lavagno, M. Kuhlmann, B. Ma, J. Pychy, Piotr Lebiedowicz, L. Capozza, Dominik Kwiatkowski, Andrew Levin, A. Wilms, Germán Mazza, Matthias Richter, Wojciech Krzemien, Sean A Dobbs, J. Pochodzalla, I. Shein, H. Ohm, Paolo Montagna, Paul Alois Buhler, Y. Naryshkin, Hans Calén, A. Apostolou, S. Orfanitski, V. Grishin, A. Kashchuk, V. Kormilitsin, Tomasz Fiutowski, M. Mingnore, M. Krebs, A. Dolgolenko, E. Fioravanti, P.-E. Tegnér, A. Chlopik, A. Gromliuk, Andreas Lehrach, I. Georgadze, B. Czech, B. Zwieglinski, Kurt Hansen, W. Schäfer, C. Motzko, R. Kunne, P. Genova, J. Lühning, A. Psyzniak, S. Bianco, H. Smit, Nicola Bianchi, Felice Iazzi, J. Rieke, M. Fritsch, R. Dzhygadlo, O. Corell, E. Pace, S. I. Manaenkov, V. Chandratre, S. Sosio, A. Olshevskiy, T. Johansson, S. Sanchez, Concettina Sfienti, R. F. Parodi, D. Walther, T. Saito, E. Köhler, Zhi Sun, Markus Büscher, P. Kulessa, Magnus Wolke, I. Kisel, V. Tokmenin, Alexander Vodopyanov, J.H. Zhao, C. Wang, M. Kube, M. Kavatsyuk, T. Hennino, Johann Zmeskal, V. Varentsov, C. Morales Morales, S. Esch, R. Kliemt, G. Schepers, S. Poslavskiy, Alessandro Drago, Dan Pantea, M. Imre, W. Eyrich, D. Melnychuk, M.P. Bussa, Dirk Grunwald, I. Lehmann, D. Rodríguez Piñeiro, Kjell Fransson, A. P. Onuchin, Valery Dormenev, M. Rossbach, F. E. Maas, Giuseppe Giraudo, M. Pelizäus, D. P. Mohanta, H. Deppe, C. Rosenbaum, M. Cardinali, A. G. Denig, A. Boukharov, V. Abramov, A. Hayrapetyan, K. Pysz, Vladimir Blinov, A. K. Hergemöller, A. Ryazantsev, K. Kalita, P. Wintz, Raghunath Sahoo, V. Akishina, P. A. Semenov, V. Balanutsa, Mikael Lundin, M. M. Macri, Anne-Laure Martin, A. Karmokov, U. Cahit, A. Demekhin, G. Rosner, W. Erni, S. Plueger, S. Leiber, Michael Werner, L. Schmitt, S. Costanza, Bent Schröder, R. Arora, D. Deermann, M. Leyhe, S.A. Kononov, S. Belostotski, Ulrich Wiedner, Maria Krawczyk, L. V. Malinina, M. Tiemens, Yu.M. Mel'nik, Ch. Schmidt, O. Merle, U. Thoma, M. Babai, A. Semenov, R. Maier, Ankhi Roy, Michael Düren, L. V. Nogach, E. Widmann, A. Zhadanov, Valentino Rigato, Stanisław Kistryn, P. Fedorets, K. Suzuki, D. A. Morozov, Franco Bradamante, Torbjörn Bäck, L. Busso, C. Le Galliard, Bhavin Patel, Alessandro Bressan, K. Chinorat, M. Wojciechowski, A. Lehmann, A.F. Makarov, A. Galoyan, P. Wieczorek, T. Holtmann, Bernd Voss, Aleksandra Wrońska, J. S. Díaz, M. Hoek, D. Veretennikov, F. H. Heinsius, P. Brandys, F. Balestra, H. Flemming, F. Lisowski, H. Younis, Paweł Moskal, G. Maniscalco, P. Jasinski, V. K. Rodionov, J. G. Messchendorp, R. Schnell, O. Miklukho, D. Prasuhn, M. Zambrana, M. Kümmel, L. Cao, I. Marishev, A. Bersani, Bo Cederwall, K. Götzen, L. Lavezzi, S. Vejdani, N. G. Minaev, Herbert Löhner, V. Metag, R. W. Novotny, E. Tomasi-Gustafsson, N. B. Skachkov, A. Cebulla, Bartosz Mindur, V. Chernetsky, B. Seitz, Daniel M. Kaplan, E. K. Koshurnikov, B. Ramstein, A. Kulkarni, B. J. Roy, T. Sefzick, D. Khaneft, D. Branford, A. A. Piskun, Reinhard Beck, S. Bleser, Yu. Yu. Lobanov, R. Siudak, V. I. Lobanov, E. A. Kravchenko, S. Bukreeva, A. Samartsev, U. Thöring, F. Feldbauer, Ting Xiao, Patrick Achenbach, Hongwei Liu, Johannes Peter Wessels, D. Bettoni, Yu.I. Davydov, V. I. Dormenev, Genady Gavrilov, Ch. Wendel, M. Yu. Barabanov, Kirill M. Semenov-Tian-Shansky, R. Birsa, T. Bel, Günter Kemmerling, A. Khoukaz, V. Carassiti, B. Galnander, Jifeng Hu, M. Bragadireanu, I. A. Kuyanov, Bruce Yabsley, Andrey V. Izotov, O. Noll, J. Kunkel, A. Dbeyssi, K. Suvorov, Vivekanand Jha, Wolfgang Kuhn, Hasko Stenzel, O. Malyshev, A. A. Sokolov, U. Kurilla, G. Kuhl, D. Kaiser, P. Strzempek, A. Goerres, J. Biernat, D. G. Ireland, H. Xu, M. K. Suleimanov, G. Sterzenbach, E. Prencipe, A. Ortiz, N. I. Zhuravlev, A. Täschner, A. Gerasimov, T. Triffterer, M. Deiseroth, A. Wilson, Marek Palka, M. Lindemulder, A. Y. Barnyakov, V.Kh. Dodokhov, D. Nicmorus, Andrey Uzunian, A. Ehret, R. Nellen, Ch. Hammann, M. Steinke, V. L. Malyshev, P. Drexler, Richard Wheadon, A. Cotta Ramusino, P. Sarin, Riccardo Introzzi, H. Clement, I. Kulakov, M. Zuehlsdorf, M. Galuska, S. Kliczewski, G.B. Pontecorvo, D. Przyborowski, Mihai Caprini, V. V. Mochalov, M. Jadhav, M. Mikirtychyants, M. Traxler, Frank Goldenbaum, Research unit Nuclear & Hadron Physics, The PANDA Collaboration, Null, Singh, B. P, Erni, W., Keshelashvili, I., Krusche, B., Steinacher, M., Liu, B., Liu, H., Liu, Z., Shen, X., Wang, C., Zhao, J., Albrecht, M., Fink, M., Heinsius, F. H., Held, T., Holtmann, T., Koch, H., Kopf, B., Kümmel, M., Kuhl, G., Kuhlmann, M., Leyhe, M., Mikirtychyants, M., Musiol, P., Mustafa, A., Pelizäus, M., Pychy, J., Richter, M., Schnier, C., Schröder, T., Sowa, C., Steinke, M., Triffterer, T., Wiedner, U., Beck, R., Hammann, C., Kaiser, D., Ketzer, B., Kube, M., Mahlberg, P., Rossbach, M., Schmidt, C., Schmitz, R., Thoma, U., Walther, D., Wendel, C., Wilson, A., Bianconi, A., Bragadireanu, M., Caprini, M., Pantea, D., Pietreanu, D., Vasile, M. E., Patel, B., Kaplan, D., Brandys, P., Czyzewski, T., Czyzycki, W., Domagala, M., Hawryluk, M., Filo, G., Krawczyk, M., Kwiatkowski, D., Lisowski, E., Lisowski, F., Fiutowski, T., Idzik, M., Mindur, B., Przyborowski, D., Swientek, K., Czech, B., Kliczewski, S., Korcyl, K., Kozela, A., Kulessa, P., Lebiedowicz, P., Malgorzata, K., Pysz, K., Schäfer, W., Siudak, R., Szczurek, A., Biernat, J., Jowzaee, S., Kamys, B., Kistryn, S., Korcyl, G., Krzemien, W., Magiera, A., Moskal, P., Palka, M., Psyzniak, A., Rudy, Z., Salabura, P., Smyrski, J., Strzempek, P., Wrońska, A., Augustin, I., Lehmann, I., Nicmorus, D., Schepers, G., Schmitt, L., Al Turany, M., Cahit, U., Capozza, L., Dbeyssi, A., Deppe, H., Dzhygadlo, R., Ehret, A., Flemming, H., Gerhardt, A., Götzen, K., Karabowicz, R., Kliemt, R., Kunkel, J., Kurilla, U., Lehmann, D., Lühning, J., Maas, F., Morales Morales, C., Mora Espí, M. C., Nerling, F., Orth, H., Peters, K., Rodríguez Piñeiro, D., Saito, N., Saito, T., Sánchez Lorente, A., Schmidt, C. J., Schwarz, C., Schwiening, J., Traxler, M., Valente, R., Voss, B., Wieczorek, P., Wilms, A., Zühlsdorf, M., Abazov, V. M., Alexeev, G., Arefiev, A., Astakhov, V. I., Barabanov, M. Y. u., Batyunya, B. V., Davydov, Y. u. I., Dodokhov, V. K. h., Efremov, A. A., Fedunov, A. G., Festchenko, A. A., Galoyan, A. S., Grigoryan, S., Karmokov, A., Koshurnikov, E. K., Lobanov, V. I., Lobanov, Y. u. Y. u., Makarov, A. F., Malinina, L. V., Malyshev, V. L., Mustafaev, G. A., Olshevskiy, A., Pasyuk, M. A., Perevalova, E. A., Piskun, A. A., Pocheptsov, T. A., Pontecorvo, G., Rodionov, V. K., Rogov, Y. u. N., Salmin, R. A., Samartsev, A. G., Sapozhnikov, M. G., Shabratova, G. S., Skachkov, N. B., Skachkova, A. N., Strokovsky, E. A., Suleimanov, M. K., Teshev, R. S. h., Tokmenin, V. V., Uzhinsky, V. V., Vodopyanov, A. S., Zaporozhets, S. A., Zhuravlev, N. I., Zorin, A. G., Branford, D., Glazier, D., Watts, D., Woods, P., Britting, A., Eyrich, W., Lehmann, A., Uhlig, F., Dobbs, S., Seth, K., Tomaradze, A., Xiao, T., Bettoni, D., Carassiti, V., Cotta Ramusino, A., Dalpiaz, P., Drago, A., Fioravanti, E., Garzia, I., Savriè, M., Stancari, G., Akishina, V., Kisel, I., Kulakov, I., Zyzak, M., Arora, R., Bel, T., Gromliuk, A., Kalicy, G., Krebs, M., Patsyuk, M., Zuehlsdorf, M., Bianchi, N., Gianotti, P., Guaraldo, C., Lucherini, V., Pace, E., Bersani, A., Bracco, G., Macri, M., Parodi, R. F., Bianco, S., Bremer, D., Brinkmann, K. T., Diehl, S., Dormenev, V., Drexler, P., Düren, M., Eissner, T., Etzelmüller, E., Föhl, K., Galuska, M., Gessler, T., Gutz, E., Hayrapetyan, A., Hu, J., Kröck, B., Kühn, W., Kuske, T., Lange, S., Liang, Y., Merle, O., Metag, V., Mülhheim, D., Münchow, D., Nanova, M., Novotny, R., Pitka, A., Quagli, T., Rieke, J., Rosenbaum, C., Schnell, R., Spruck, B., Stenzel, H., Thöring, U., Ullrich, M., Wasem, T., Werner, M., Zaunick, H. G., Ireland, D., Rosner, G., Seitz, B., Deepak, P. N., Kulkarni, A. V., Apostolou, A., Babai, M., Kavatsyuk, M., Lemmens, P., Lindemulder, M., Löhner, H., Messchendorp, J., Schakel, P., Smit, H., van der Weele, J. C., Tiemens, M., Veenstra, R., Vejdani, S., Kalita, K., Mohanta, D. P., Kumar, A., Roy, A., Sahoo, R., Sohlbach, H., Büscher, M., Cao, L., Cebulla, A., Deermann, D., Dosdall, R., Esch, S., Georgadze, I., Gillitzer, A., Goerres, A., Goldenbaum, F., Grunwald, D., Herten, A., Hu, Q., Kemmerling, G., Kleines, H., Kozlov, V., Lehrach, A., Leiber, S., Maier, R., Nellen, R., Ohm, H., Orfanitski, S., Prasuhn, D., Prencipe, E., Ritman, J., Schadmand, S., Schumann, J., Sefzick, T., Serdyuk, V., Sterzenbach, G., Stockmanns, T., Wintz, P., Wüstner, P., Xu, H., Li, S., Li, Z., Sun, Z., Rigato, V., Fissum, S., Hansen, K., Isaksson, L., Lundin, M., Schröder, B., Achenbach, P., Bleser, S., Cardinali, M., Corell, O., Deiseroth, M., Denig, A., Distler, M., Feldbauer, F., Fritsch, M., Jasinski, P., Hoek, M., Kangh, D., Karavdina, A., Lauth, W., Leithoff, H., Merkel, H., Michel, M., Motzko, C., Müller, U., Noll, O., Plueger, S., Pochodzalla, J., Sanchez, S., Schlimme, S., Sfienti, C., Steinen, M., Thiel, M., Weber, T., Zambrana, M., Dormenev, V. I., Fedorov, A. A., Korzihik, M. V., Missevitch, O. V., Balanutsa, P., Balanutsa, V., Chernetsky, V., Demekhin, A., Dolgolenko, A., Fedorets, P., Gerasimov, A., Goryachev, V., Varentsov, V., Boukharov, A., Malyshev, O., Marishev, I., Semenov, A., Konorov, I., Paul, S., Grieser, S., Hergemöller, A. K., Khoukaz, A., Köhler, E., Täschner, A., Wessels, J., Dash, S., Jadhav, M., Kumar, S., Sarin, P., Varma, R., Chandratre, V. B., Datar, V., Dutta, D., Jha, V., Kumawat, H., Mohanty, A. K., Roy, B., Yan, Y., Chinorat, K., Khanchai, K., Ayut, L., Pornrad, S., Barnyakov, A. Y., Blinov, A. E., Blinov, V. E., Bobrovnikov, V. S., Kononov, S. A., Kravchenko, E. A., Kuyanov, I. A., Onuchin, A. P., Sokolov, A. A., Tikhonov, Y. A., Atomssa, E., Hennino, T., Imre, M., Kunne, R., Le Galliard, C., Ma, B., Marchand, D., Ong, S., Ramstein, B., Rosier, P., Tomasi Gustafsson, E., Van de Wiele, J., Boca, G., Costanza, S., Genova, P., Lavezzi, L., Montagna, P., Rotondi, A., Abramov, V., Belikov, N., Bukreeva, S., Davidenko, A., Derevschikov, A., Goncharenko, Y., Grishin, V., Kachanov, V., Kormilitsin, V., Melnik, Y., Levin, A., Minaev, N., Mochalov, V., Morozov, D., Nogach, L., Poslavskiy, S., Ryazantsev, A., Ryzhikov, S., Semenov, P., Shein, I., Uzunian, A., Vasiliev, A., Yakutin, A., Yabsley, B., Bäck, T., Cederwall, B., Makónyi, K., Tegnér, P. E., von Würtemberg, K. M., Belostotski, S., Gavrilov, G., Izotov, A., Kashchuk, A., Levitskaya, O., Manaenkov, S., Miklukho, O., Naryshkin, Y., Suvorov, K., Veretennikov, D., Zhadanov, A., Rai, A. K., Godre, S. S., Duchat, R., Amoroso, A., Bussa, M. P., Busso, L., De Mori, F., Destefanis, M., Fava, L., Ferrero, L., Greco, M., Maggiora, M., Maniscalco, G., Marcello, S., Sosio, S., Spataro, S., Zotti, L., Calvo, D., Coli, S., De Remigis, P., Filippi, A., Giraudo, G., Lusso, S., Mazza, G., Mingnore, M., Rivetti, A., Wheadon, R., Balestra, F., Iazzi, F., Introzzi, R., Lavagno, A., Younis, H., Birsa, Renato, Bradamante, Franco, Bressan, Andrea, Martin, Anna, Clement, H., Gålnander, B., Caldeira Balkeståhl, L., Calén, H., Fransson, K., Johansson, T., Kupsc, A., Marciniewski, P., Pettersson, J., Schönning, K., Wolke, M., Zlomanczuk, J., Díaz, J., Ortiz, A., Vinodkumar, P. C., Parmar, A., Chlopik, A., Melnychuk, D., Slowinski, B., Trzcinski, A., Wojciechowski, M., Wronka, S., Zwieglinski, B., Bühler, P., Marton, J., Suzuki, K., Widmann, E., Zmeskal, J., Fröhlich, B., Khaneft, D., Lin, D., Zimmermann, I., and Semenov Tian Shansky, K.
- Subjects
Particle physics ,(P)Over-Baranda ,Nuclear and High Energy Physics ,Electroproduction ,Hadron ,Annihilation ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Particle identification ,Nucleon ,NO ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Factorization ,0103 physical sciences ,Fysik ,Invariant mass ,ddc:530 ,Meson Production ,Monte-Carlo ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Quantum chromodynamics ,010308 nuclear & particles physics ,Perturbative QCD ,Qcd ,Physical Sciences ,Exclusive Processes ,High Energy Physics::Experiment ,Pi(0) ,Cross-Sections ,Energy (signal processing) - Abstract
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ($��N$) TDAs from $\bar{p}p \to e^+e^- ��^0$ reaction with the future PANDA detector at the FAIR facility. At high center of mass energy and high invariant mass squared of the lepton pair $q^2$, the amplitude of the signal channel $\bar{p}p \to e^+e^- ��^0$ admits a QCD factorized description in terms of $��N$ TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring $\bar{p}p \to e^+e^- ��^0$ with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. $\bar{p}p \to ��^+��^- ��^0$ were performed for the center of mass energy squared $s = 5$ GeV$^2$ and $s = 10$ GeV$^2$, in the kinematic regions $3.0 < q^2 < 4.3$ GeV$^2$ and $5 < q^2 < 9$ GeV$^2$, respectively, with a neutral pion scattered in the forward or backward cone $| \cos��_{��^0}| > 0.5 $ in the proton-antiproton center of mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of $5\cdot 10^7$ ($1\cdot 10^7$) at low (high) $q^2$ for $s=5$ GeV$^2$, and of $1\cdot 10^8$ ($6\cdot 10^6$) at low (high) $q^2$ for $s=10$ GeV$^2$, while keeping the signal reconstruction efficiency at around $40\%$. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to $2$ fb$^{-1}$ of integrated luminosity. (.../...), 19 pages, 7 figures (some multiple), 2 tables (each double), preprint of an article for epj - v2
- Published
- 2015
- Full Text
- View/download PDF
313. Isotensor Dibaryon in the pp→ppπ^{+}π^{-} Reaction?
- Author
-
Adlarson P, Augustyniak W, Bardan W, Bashkanov M, Bergmann FS, Berłowski M, Bondar A, Büscher M, Calén H, Ciepał I, Clement H, Czerwiński E, Demmich K, Engels R, Erven A, Erven W, Eyrich W, Fedorets P, Föhl K, Fransson K, Goldenbaum F, Goswami A, Grigoryev K, Heijkenskjöld L, Hejny V, Hüsken N, Jarczyk L, Johansson T, Kamys B, Kemmerling G, Khoukaz A, Khreptak O, Kirillov DA, Kistryn S, Kleines H, Kłos B, Krzemień W, Kulessa P, Kupść A, Lalwani K, Lersch D, Lorentz B, Magiera A, Maier R, Marciniewski P, Mariański B, Morsch HP, Moskal P, Ohm H, Parol W, Perez Del Rio E, Piskunov NM, Prasuhn D, Pszczel D, Pysz K, Ritman J, Roy A, Rudy Z, Rundel O, Sawant S, Schadmand S, Schätti-Ozerianska I, Sefzick T, Serdyuk V, Shwartz B, Skorodko T, Skurzok M, Smyrski J, Sopov V, Stassen R, Stepaniak J, Stephan E, Sterzenbach G, Stockhorst H, Ströher H, Szczurek A, Trzciński A, Wolke M, Wrońska A, Wüstner P, Yamamoto A, Zabierowski J, Zieliński MJ, Złomańczuk J, Żuprański P, and Żurek M
- Abstract
Exclusive measurements of the quasifree pp→ppπ^{+}π^{-} reaction have been carried out at WASA@COSY by means of pd collisions at T_{p}=1.2 GeV. Total and differential cross sections have been extracted covering the energy region T_{p}=1.08-1.36 GeV, which is the region of N^{*}(1440) and Δ(1232)Δ(1232) resonance excitations. Calculations describing these excitations by t-channel meson exchange are at variance with the measured differential cross sections and underpredict substantially the experimental total cross section. An isotensor ΔN dibaryon resonance with I(J^{P})=2(1^{+}) produced associatedly with a pion is able to overcome these deficiencies.
- Published
- 2018
- Full Text
- View/download PDF
314. The high-intensity option of the SANS diffractometer KWS-2 at JCNS - characterization and performance of the new multi-megahertz detection system.
- Author
-
Houston JE, Brandl G, Drochner M, Kemmerling G, Engels R, Papagiannopoulos A, Sarter M, Stadler A, and Radulescu A
- Abstract
A new detection system based on an array of
3 He tubes and innovative fast detection electronics has been installed on the high-intensity small-angle neutron scattering (SANS) diffractometer KWS-2 operated by the Jülich Centre for Neutron Science (JCNS) at the Heinz Meier-Leibnitz Zentrum in Garching, Germany. The new detection system is composed of 18 eight-pack modules of3 He tubes that work independently of one another (each unit has its own processor and electronics). To improve the read-out characteristics and reduce the noise, the detection electronics are mounted in a closed case on the rear of the3 He tubes' frame. The tubes' efficiency is about 85% (for λ = 5 Å) and the resolution slightly better than 8 mm. The new detection system is characterized by a dead-time constant of 3.3 µs per tube and an overall count rate as high as 6 MHz at 10% dead-time loss. Compared with the old detector this is an improvement by a factor of 60. The much higher count rate will shorten the measurement times and thus increase the number of experiments possible in a given time period by the optimal use of the high flux of up to 2 × 108 n cm-2 s-1 at the sample position. Combined with the event-mode operation capability, this will enable new scientific opportunities in the field of structural investigations of small soft-matter and biological systems. The implementation of the detector in the high-intensity concept on KWS-2, its characterization and its performance based on test experiments are reported in this paper.- Published
- 2018
- Full Text
- View/download PDF
315. Spin Dependence of η Meson Production in Proton-Proton Collisions Close to Threshold.
- Author
-
Adlarson P, Augustyniak W, Bardan W, Bashkanov M, Bass SD, Bergmann FS, Berłowski M, Bondar A, Büscher M, Calén H, Ciepał I, Clement H, Czerwiński E, Demmich K, Engels R, Erven A, Erven W, Eyrich W, Fedorets P, Föhl K, Fransson K, Goldenbaum F, Goswami A, Grigoryev K, Gullström CO, Heijkenskjöld L, Hejny V, Hüsken N, Jarczyk L, Johansson T, Kamys B, Kemmerling G, Khatri G, Khoukaz A, Khreptak O, Kirillov DA, Kistryn S, Kleines H, Kłos B, Krzemień W, Kulessa P, Kupść A, Kuzmin A, Lalwani K, Lersch D, Lorentz B, Magiera A, Maier R, Marciniewski P, Mariański B, Morsch HP, Moskal P, Ohm H, Parol W, Perez Del Rio E, Piskunov NM, Prasuhn D, Pszczel D, Pysz K, Pyszniak A, Ritman J, Roy A, Rudy Z, Rundel O, Sawant S, Schadmand S, Schätti-Ozerianska I, Sefzick T, Serdyuk V, Shwartz B, Sitterberg K, Skorodko T, Skurzok M, Smyrski J, Sopov V, Stassen R, Stepaniak J, Stephan E, Sterzenbach G, Stockhorst H, Ströher H, Szczurek A, Trzciński A, Wolke M, Wrońska A, Wüstner P, Yamamoto A, Zabierowski J, Zieliński MJ, Złomańczuk J, Żuprański P, and Żurek M
- Abstract
Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high polarization degree of the proton beam of COSY, the reaction p[over →]p→ppη has been measured close to threshold to explore the analyzing power A_{y}. The angular distribution of A_{y} is determined with the precision improved by more than 1 order of magnitude with respect to previous results, allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q=15 MeV, signaling s-wave production with no evidence for higher partial waves. At Q=72 MeV the data reveal strong interference of Ps and Pp partial waves and cancellation of (Pp)^{2} and Ss^{*}Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the η meson.
- Published
- 2018
- Full Text
- View/download PDF
316. Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2.
- Author
-
Radulescu A, Szekely NK, Appavou MS, Pipich V, Kohnke T, Ossovyi V, Staringer S, Schneider GJ, Amann M, Zhang-Haagen B, Brandl G, Drochner M, Engels R, Hanslik R, and Kemmerling G
- Subjects
- Gels chemistry, Neutrons, Polymers chemistry, Proteins chemistry, Neutron Diffraction methods
- Abstract
The KWS-2 SANS diffractometer is dedicated to the investigation of soft matter and biophysical systems covering a wide length scale, from nm to µm. The instrument is optimized for the exploration of the wide momentum transfer Q range between 1x10
-4 and 0.5 Å-1 by combining classical pinhole, focusing (with lenses), and time-of-flight (with chopper) methods, while simultaneously providing high-neutron intensities with an adjustable resolution. Because of its ability to adjust the intensity and the resolution within wide limits during the experiment, combined with the possibility to equip specific sample environments and ancillary devices, the KWS-2 shows a high versatility in addressing the broad range of structural and morphological studies in the field. Equilibrium structures can be studied in static measurements, while dynamic and kinetic processes can be investigated over time scales between minutes to tens of milliseconds with time-resolved approaches. Typical systems that are investigated with the KWS-2 cover the range from complex, hierarchical systems that exhibit multiple structural levels (e.g., gels, networks, or macro-aggregates) to small and poorly-scattering systems (e.g., single polymers or proteins in solution). The recent upgrade of the detection system, which enables the detection of count rates in the MHz range, opens new opportunities to study even very small biological morphologies in buffer solution with weak scattering signals close to the buffer scattering level at high Q. In this paper, we provide a protocol to investigate samples with characteristic size levels spanning a wide length scale and exhibiting ordering in the mesoscale structure using KWS-2. We present in detail how to use the multiple working modes that are offered by the instrument and the level of performance that is achieved.- Published
- 2016
- Full Text
- View/download PDF
317. Tuning the instrument resolution using chopper and time of flight at the small-angle neutron scattering diffractometer KWS-2.
- Author
-
Radulescu A, Székely NK, Polachowski S, Leyendecker M, Amann M, Buitenhuis J, Drochner M, Engels R, Hanslik R, Kemmerling G, Lindner P, Papagiannopoulos A, Pipich V, Willner L, Frielinghaus H, and Richter D
- Abstract
Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q -range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes.
- Published
- 2015
- Full Text
- View/download PDF
318. Regions of SV40 large T antigen necessary for oligomerization and complex formation with the cellular oncoprotein p53.
- Author
-
Montenarh M, Vesco C, Kemmerling G, Müller D, and Henning R
- Subjects
- Amino Acid Sequence, Animals, Antigens, Polyomavirus Transforming, Binding Sites, Electrophoresis, Polyacrylamide Gel, Molecular Weight, Polymers metabolism, Tumor Suppressor Protein p53, Antigens, Viral, Tumor analysis, Neoplasm Proteins metabolism, Oncogene Proteins, Viral analysis, Phosphoproteins metabolism
- Abstract
The simian virus 40 (SV40) T antigen is composed of 708 amino acids and forms monomers and various oligomers and, in small amounts, heterologous complexes with the cellular oncoprotein p53 (T-p53). Using SV40 mutants coding for T antigen fragments which are either deleted in the N-terminal half or truncated by various lengths at the C-terminal end, we found that a region between amino acids 114 and 152 and a C-terminal region up to amino acid 669 are essential for the formation of high Mr oligomers of T antigen. Furthermore, only the C-terminal end up to amino acid 669 is essential for T-p53 complex formation but not the N-terminus up to amino acid 152.
- Published
- 1986
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.