251. The Herschel view of the on-going star formation in the Vela-C molecular cloud
- Author
-
Giannini, T., Elia, D., Lorenzetti, D., Molinari, S., Motte, F., Schisano, E., Pezzuto, S., Pestalozzi, M., Di Giorgio, A. M., André, P., Hill, T., Benedettini, M., Bontemps, S., Di Francesco, J., Fallscheer, C., Hennemann, M., Kirk, J., Minier, V., Nguyn Lu’o’ng, Q., Polychroni, D., Rygl, K. L. J., Saraceno, P., Schneider, N., Spinoglio, L., Testi, L., Ward-Thompson, D., White, G. J., Giannini, T., Elia, D., Lorenzetti, D., Molinari, S., Motte, F., Schisano, E., Pezzuto, S., Pestalozzi, M., Di Giorgio, A. M., André, P., Hill, T., Benedettini, M., Bontemps, S., Di Francesco, J., Fallscheer, C., Hennemann, M., Kirk, J., Minier, V., Nguyn Lu’o’ng, Q., Polychroni, D., Rygl, K. L. J., Saraceno, P., Schneider, N., Spinoglio, L., Testi, L., Ward-Thompson, D., and White, G. J.
- Abstract
Aims. As part of the Herschel guaranteed time key programme "HOBYS", we present the PACS and SPIRE photometric survey of the star-forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Our main objectives are to take a census of the cold sources and to derive their mass distribution down to a few solar masses. Methods. Vela-C was observed with PACS and SPIRE in parallel mode at five wavelengths between 70 μm and 500 μm over an area of about 3 square degrees. A photometric catalogue was extracted from the detections in each of the five bands, using a threshold of 5σ over the local background. Out of this catalogue we selected a robust sub-sample of 268 sources, of which ~75% are cloud clumps (diameter between 0.05 pc and 0.13 pc) and 25% are cores (diameter between 0.025 pc and 0.05 pc). Their spectral energy distributions (SEDs) were fitted with a modified black body function. We classify 48 sources as protostellar, based on their detection at 70 μm or at shorter wavelengths, and 218 as starless, because of non-detections at 70 μm. For two other sources, we do not provide a secure classification, but suggest they are Class 0 protostars. Results. From the SED fitting we derived key physical parameters (i.e. mass, temperature, bolometric luminosity). Protostellar sources are in general warmer (
= 12.8 K) and more compact ( = 0.040 pc) than starless sources ( = 10.3 K, = 0.067 pc). Both these findings can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% probability for the sources to be gravita