301. Peroxisome proliferator-activated receptor-γ as a potential therapeutic target in the treatment of preeclampsia.
- Author
-
McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, and Kenny LC
- Subjects
- Animals, Female, PPAR gamma agonists, Pre-Eclampsia physiopathology, Pregnancy, Rats, Rats, Sprague-Dawley, Rosiglitazone, Blood Pressure drug effects, Metalloporphyrins pharmacology, PPAR gamma metabolism, Pre-Eclampsia metabolism, Protoporphyrins pharmacology, Thiazolidinediones pharmacology
- Abstract
Preeclampsia is a multisystemic disorder of pregnancy characterized by hypertension, proteinuria, and maternal endothelial dysfunction. It is a major cause of maternal and perinatal morbidity and mortality and is thought to be attributable, in part, to inadequate trophoblast invasion. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-activated transcription factor expressed in trophoblasts, and the vasculature of which activation has been shown to improve endothelium-dependent vasodilatation in hypertensive conditions. We investigated the effects of the administration of a PPAR-γ agonist using the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. The selective PPAR-γ agonist, rosiglitazone, was administered to pregnant rats that had undergone RUPP surgery. To investigate whether any observed beneficial effects of PPAR-γ activation were mediated by the antioxidant enzyme, heme oxygenase 1, rosiglitazone was administered in combination with the heme oxygenase 1 inhibitor tin-protoporphyrin IX. RUPP rats were characterized by hypertension, endothelial dysfunction, and elevated microalbumin:creatinine ratios. Rosiglitazone administration ameliorated hypertension, improved vascular function, and reduced the elevated microalbumin:creatinine ratio in RUPP rats. With the exception of microalbumin:creatinine ratio, these beneficial effects were abrogated in the presence of the heme oxygenase 1 inhibitor. Administration of a PPAR-γ agonist prevented the development of several of the pathophysiological characteristics associated with the RUPP model of preeclampsia, via a heme oxygenase 1-dependent pathway. The findings from this study provide further insight into the underlying etiology of preeclampsia and a potential therapeutic target for the treatment of preeclampsia.
- Published
- 2011
- Full Text
- View/download PDF