301. 2-(8-hydroxy-6-methoxy-1-oxo-1h-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice.
- Author
-
Ichinose K, Maeshima Y, Yamamoto Y, Kinomura M, Hirokoshi K, Kitayama H, Takazawa Y, Sugiyama H, Yamasaki Y, Agata N, and Makino H
- Subjects
- Animals, Chemokine CCL2 genetics, Diabetes Mellitus, Type 2 complications, Heart anatomy & histology, Insulin blood, Interleukin-6 genetics, Kidney anatomy & histology, Liver anatomy & histology, Mice, Obesity complications, Organ Size, Placebos, Polymerase Chain Reaction, Transforming Growth Factor beta genetics, Angiogenesis Inhibitors therapeutic use, Diabetes Mellitus, Type 2 physiopathology, Diabetic Nephropathies prevention & control, Isocoumarins therapeutic use, Obesity physiopathology
- Abstract
One of the mechanisms involved in the progression of diabetic nephropathy, the most common cause of end-stage renal failure, is angiogenic phenomenon associated with the increase of angiogenic factors such as vascular endothelial growth factor (VEGF)-A and angiopoietin (Ang)-2, an antagonist of Ang-1. In the present study, we examined the therapeutic efficacy of 2-(8-hydroxy-6-methoxy-1-oxo-1H-2-benzopyran-3-yl) propionic acid (NM-3), a small molecule isocoumarin with antiangiogenic activity, using diabetic db/db mice, a model of obese type 2 diabetes. Increases in kidney weight, glomerular volume, creatinine clearance, urinary albumin excretion, total mesangial fraction, glomerular type IV collagen, glomerular endothelial area (CD31(+)), and monocyte/macrophage accumulation (F4/80(+)) observed in control db/db mice were significantly suppressed by daily intraperitoneal injection of NM-3 (100 mg/kg, for 8 weeks). Increases in renal expression of VEGF-A, Ang-2, fibrogenic factor transforming growth factor (TGF)-beta1, and chemokine monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha were also inhibited by NM-3 in db/db mice. Furthermore, decreases of nephrin mRNA and protein levels in db/db mice were recovered by NM-3. In addition, treatment of db/db mice with NM-3 did not affect body weight, blood glucose, serum insulin, or food consumption. NM-3 significantly suppressed the increase of VEGF induced by high glucose in cultured podocytes and also suppressed the increase of VEGF and TGF-beta induced by high glucose in cultured mesangial cells. Taken together, these results demonstrate the potential use of NM-3 as a novel therapeutic agent for renal alterations in type 2 diabetes.
- Published
- 2006