251. Multiomics integrative analysis identifies APOE allele-specific blood biomarkers associated to Alzheimer's disease etiopathogenesis.
- Author
-
Madrid L, Moreno-Grau S, Ahmad S, González-Pérez A, de Rojas I, Xia R, Martino Adami PV, García-González P, Kleineidam L, Yang Q, Damotte V, Bis JC, Noguera-Perea F, Bellenguez C, Jian X, Marín-Muñoz J, Grenier-Boley B, Orellana A, Ikram MA, Amouyel P, Satizabal CL, Real LM, Antúnez-Almagro C, DeStefano A, Cabrera-Socorro A, Sims R, Van Duijn CM, Boerwinkle E, Ramírez A, Fornage M, Lambert JC, Williams J, Seshadri S, Ried JS, Ruiz A, and Saez ME
- Abstract
Alzheimer's disease (AD) is the most common form of dementia, currently affecting 35 million people worldwide. Apolipoprotein E (APOE) ε4 allele is the major risk factor for sporadic, late-onset AD (LOAD), which comprises over 95% of AD cases, increasing the risk of AD 4-12 fold. Despite this, the role of APOE in AD pathogenesis is still a mystery. Aiming for a better understanding of APOE-specific effects, the ADAPTED consortium analysed and integrated publicly available data of multiple OMICS technologies from both plasma and brain stratified by APOE haplotype ( APOE2, APOE3 and APOE4 ). Combining genome-wide association studies (GWAS) with differential mRNA and protein expression analyses and single-nuclei transcriptomics, we identified genes and pathways contributing to AD in both APOE dependent and independent fashion. Interestingly, we characterised a set of biomarkers showing plasma and brain consistent protein profiles and opposite trends in APOE2 and APOE4 AD cases that could constitute screening tools for a disease that lacks specific blood biomarkers. Beside the identification of APOE-specific signatures, our findings advocate that this novel approach, based on the concordance across OMIC layers and tissues, is an effective strategy for overcoming the limitations of often underpowered single-OMICS studies.
- Published
- 2021
- Full Text
- View/download PDF