451. Multisymplectic constraint analysis of scalar field theories, Chern-Simons gravity, and bosonic string theory
- Author
-
Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Gomis Torné, Joaquim, Guerra IV, Arnoldo, Román Roy, Narciso, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions, Gomis Torné, Joaquim, Guerra IV, Arnoldo, and Román Roy, Narciso
- Abstract
© 2023 Elsevier. This manuscript version is made available under the CC BY 4.0 DEED license https://creativecommons.org/licenses/by/4.0, The (pre)multisymplectic geometry of the De Donder–Weyl formalism for field theories is further developed for a variety of field theories including a scalar field theory from the canonical Klein-Gordon action, the electric and magnetic Carrollian scalar field theories, bosonic string theory from the Nambu-Goto action, and gravity as a Chern-Simons theory. The Lagrangians for the scalar field theories and for Chern-Simons gravity are found to be singular in the De Donder–Weyl sense while the Nambu-Goto Lagrangian is found to be regular. Furthermore, the constraint structure of the premultisymplectic phase spaces of singular field theories is explained and applied to these theories. Finally, it is studied how symmetries are developed on the (pre)multisymplectic phase spaces in the presence of constraints., We acknowledge conversations on non-Lorentzian topics with Eric Bergshoeff, Roberto Casalbuoni, José Figueroa-O’Farrill, Axel Kleinschmidt, and Alfredo Pérez. We are indebted to Prof. Victor Tapia for having drawn our attention to an error in the first calculation of the formula (58). We acknowledge the financial support of the Ministerio de Ciencia, Innovación y Universidades (Spain), projects PGC2018-098265-B-C33 and PID2021-125515NB-C21, and the financial support for research groups AGRUPS-2022 of the Universitat Politècnica de Catalunya (UPC). The work ofJG has been supported in part by Ministerio de Asuntos Económicos y Transformación Digital FPA2016-76005-C2-1-P and PID2019-105614GB-C21 and from the State Agency for Research of the Spanish Ministry of Science and Innovation through the Unit of Excellence Maria de Maeztu 2020-203 award to the Institute of Cosmos Sciences (CEX2019- 000918-M), Peer Reviewed, Postprint (published version)
- Published
- 2023