1,870 results on '"König, Wolfgang"'
Search Results
2. Proof of off-diagonal long-range order in a mean-field trapped Bose gas via the Feynman--Kac formula
- Author
-
Bai, Tianyi, König, Wolfgang, and Vogel, Quirin
- Subjects
Mathematics - Probability - Abstract
We consider the non-interacting Bose gas of $N$ bosons in dimension $d\geq 3$ in a trap in a mean-field setting with a vanishing factor $a_N$ in front of the kinetic energy. The choice $a_N=N^{-2/d}$ is the semi-classical setting and was analysed in great detail in a special, interacting case in Deuchert and Seiringer (2021). Using a version of the well-known Feynman--Kac representation and a further representation in terms of a Poisson point process, we derive precise asymptotics for the reduced one-particle density matrix, implying off-diagonal long-range order (ODLRO, a well-known criterion for Bose--Einstein condensation) for $a_N$ above a certain threshold and non-occurrence of ODLRO for $a_N$ below that threshold. In particular, we relate the condensate and its total mass to the amount of particles in long loops in the Feynman--Kac formula, the order parameter that Feynman suggested in Feynman (1953). For $a_N\ll N^{-2/d}$, we prove that all loops have the minimal length one, and for $a_N\gg N^{-2/d}$ we prove 100 percent condensation and identify the distribution of the long-loop lengths as the Poisson--Dirichlet distribution., Comment: 24 pages, comments welcome
- Published
- 2024
3. Self-repellent Brownian Bridges in an Interacting Bose Gas
- Author
-
Bolthausen, Erwin, Koenig, Wolfgang, and Mukherjee, Chiranjib
- Subjects
Mathematics - Probability - Abstract
We consider a model of $d$-dimensional interacting quantum Bose gas, expressed in terms of an ensemble of interacting Brownian bridges in a large box and undergoing the influence of all the interactions between the legs of each of the Brownian bridges. We study the thermodynamic limit of the system and give an explicit formula for the limiting free energy and a necessary and sufficient criterion for the occurrence of a condensation phase transition. For $d\geq 5$ and sufficiently small interaction, we prove that the condensate phase is not empty. The ideas of proof rely on the similarity of the interaction to that of the self-repellent random walk, and build on a lace expansion method conducive to treating {\it paths} undergoing mutual repellence within each bridge.
- Published
- 2024
4. Spatial particle processes with coagulation: Gibbs-measure approach, gelation and Smoluchowski equation
- Author
-
Andreis, Luisa, König, Wolfgang, Langhammer, Heide, and Patterson, Robert I. A.
- Subjects
Mathematics - Probability ,82C22, 60J25, 60F10, 60G55, 60K35, 35Q70 - Abstract
We study a spatial Markovian particle system with pairwise coagulation, a spatial version of the Marcus--Lushnikov process: according to a coagulation kernel $K$, particle pairs merge into a single particle, and their masses are united. We introduce a statistical-mechanics approach to the study of this process. We derive an explicit formula for the empirical process of the particle configuration at a given fixed time $T$ in terms of a reference Poisson point process, whose points are trajectories that coagulate into one particle by time $T$. The non-coagulation between any two of them induces an exponential pair-interaction, which turns the description into a many-body system with a Gibbsian pair-interaction. Based on this, we first give a large-deviation principle for the joint distribution of the particle histories (conditioning on an upper bound for particle sizes), in the limit as the number $N$ of initial atoms diverges and the kernel scales as $\frac 1N K$. We characterise the minimiser(s) of the rate function, we give criteria for its uniqueness and prove a law of large numbers (unconditioned). Furthermore, we use the unique minimiser to construct a solution of the Smoluchowski equation and give a criterion for the occurrence of a gelation phase transition., Comment: 60 pages, 1 figure
- Published
- 2024
5. Off-diagonal long-range order for the free Bose gas via the Feynman--Kac formula
- Author
-
König, Wolfgang, Vogel, Quirin, and Zass, Alexander
- Subjects
Mathematics - Probability ,60K35, 82B10 - Abstract
We consider the path-integral representation of the ideal Bose gas under various boundary conditions. We show that Bose--Einstein condensation occurs at the famous critical density threshold, by proving that its $1$-particle-reduced density matrix exhibits off-diagonal long-range order above that threshold, but not below. Our proofs are based on the well-known Feynman--Kac formula and a representation in terms of a crucial Poisson point process. Furthermore, in the condensation regime, we derive a law of large numbers with strong concentration for the number of particles in short loops. In contrast to the situation for free boundary conditions, where the entire condensate sits in just one loop, for all other boundary conditions we obtain the limiting Poisson--Dirichlet distribution for the collection of the lengths of all long loops. Our proofs are new and purely probabilistic (apart from a standard eigenvalue expansion), using elementary tools like Markov's inequality, Poisson point processes, combinatorial formulas for cardinalities of particular partition sets, and asymptotics for random walks with Pareto-distributed steps., Comment: 34 pages
- Published
- 2023
6. Weakly self-avoiding walk in a pareto-distributed random potential
- Author
-
König, Wolfgang, Pétrélis, Nicolas, Santos, Renato Soares dos, and van Zuijlen, Willem
- Subjects
Mathematics - Probability - Abstract
We investigate a model of continuous-time simple random walk paths in $\mathbb{Z}^d$ undergoing two competing interactions: an attractive one towards the large values of a random potential, and a self-repellent one in the spirit of the well-known weakly self-avoiding random walk. We take the potential to be i.i.d.~Pareto-distributed with parameter $\alpha>d$, and we tune the strength of the interactions in such a way that they both contribute on the same scale as $t\to\infty$. Our main results are (1) the identification of the logarithmic asymptotics of the partition function of the model in terms of a random variational formula, and, (2) the identification of the path behaviour that gives the overwhelming contribution to the partition function for $\alpha>2d$: the random-walk path follows an optimal trajectory that visits each of a finite number of random lattice sites for a positive random fraction of time. We prove a law of large numbers for this behaviour, i.e., that all other path behaviours give strictly less contribution to the partition function. The joint distribution of the variational problem and of the optimal path can be expressed in terms of a limiting Poisson point process arising by a rescaling of the random potential. The latter convergence is in distribution and is in the spirit of a standard extreme-value setting for a rescaling of an i.i.d. potential in large boxes, like in \cite{KLMS09}.
- Published
- 2023
7. The throughput in multi-channel (slotted) ALOHA: large deviations and analysis of bad events
- Author
-
König, Wolfgang and Kwofie, Charles
- Subjects
Mathematics - Probability ,Computer Science - Information Theory ,60F10, 60G50 - Abstract
We consider ALOHA and slotted ALOHA protocols as medium access rules for a multi-channel message delivery system. Users decide randomly and independently with a minimal amount of knowledge about the system at random times to make a message emission attempt. We consider the two cases that the system has a fixed number of independent available channels, and that interference constraints make the delivery of too many messages at a time impossible. We derive probabilistic formulas for the most important quantities like the number of successfully delivered messages and the number of emission attempts, and we derive large-deviation principles for these quantities in the limit of many participants and many emission attempts. We analyse the rate functions and their minimizers and derive laws of large numbers for the throughput. We optimize it over the probability parameter. Furthermore, we are interested in questions like ``if the number of successfully delivered messages is significantly lower than the expectation, was the reason that too many or too few sending attempts were made?''. Our main tools are basic tools from probability and the theory of (the probabilities of) large deviations.
- Published
- 2023
8. Multi-channel ALOHA and CSMA medium-access protocols: Markovian description and large deviations
- Author
-
König, Wolfgang and Shafigh, Helia
- Subjects
Mathematics - Probability ,60K35, 82C21 - Abstract
We consider a multi-channel communication system under ALOHA and CSMA protocols, resepctively, in continuous time. We derive probabilistic formulas for the most important quantities: the numbers of sending attempts and the number of successfully delivered messages in a given time interval. We derive (1) explicit formulas for the large-time limiting throughput, (2) introduce an explicit and ergodic Markov chain for a deeper probabilistic analysis, and use this to (3) derive exponential asymptotics for rare events for these quantities in the limit of large time, via large-deviation principles.
- Published
- 2022
9. Technikgeschichte
- Author
-
König, Wolfgang, Gutmann, Mathias, editor, Wiegerling, Klaus, editor, and Rathgeber, Benjamin, editor
- Published
- 2024
- Full Text
- View/download PDF
10. Association of BMI, lipid-lowering medication, and age with prevalence of type 2 diabetes in adults with heterozygous familial hypercholesterolaemia: a worldwide cross-sectional study
- Author
-
Elshorbagy, Amany, Lyons, Alexander R.M., Vallejo-Vaz, Antonio J., Stevens, Christophe A.T., Dharmayat, Kanika I., Brandts, Julia, Catapano, Alberico L., Freiberger, Tomas, Hovingh, G. Kees, Mata, Pedro, Raal, Frederick J., Santos, Raul D., Soran, Handrean, Watts, Gerald F., Abifadel, Marianne, Aguilar-Salinas, Carlos A., Alhabib, Khalid F., Alkhnifsawi, Mutaz, Almahmeed, Wael, Alonso, Rodrigo, Al-Rasadi, Khalid, Al-Sarraf, Ahmad, Ashavaid, Tester F., Banach, Maciej, Binder, Christoph J., Bourbon, Mafalda, Brunham, Liam R., Chlebus, Krzysztof, Corral, Pablo, Cruz, Diogo, Davletov, Kairat, Descamps, Olivier S., Ezhov, Marat, Gaita, Dan, Groselj, Urh, Harada-Shiba, Mariko, Holven, Kirsten B., Kayikcioglu, Meral, Khovidhunkit, Weerapan, Lalic, Katarina, Latkovskis, Gustavs, Laufs, Ulrich, Liberopoulos, Evangelos, Lima-Martinez, Marcos M., Lin, Jie, Maher, Vincent, Marais, A. David, März, Winfried, Mirrakhimov, Erkin, Miserez, André R., Mitchenko, Olena, Nawawi, Hapizah, Nordestgaard, Børge G., Panayiotou, Andrie G., Paragh, György, Petrulioniene, Zaneta, Pojskic, Belma, Postadzhiyan, Arman, Reda, Ashraf, Reiner, Željko, Reyes, Ximena, Sadiq, Fouzia, Sadoh, Wilson E., Schunkert, Heribert, Shek, Aleksandr B., Stroes, Erik, Su, Ta-Chen, Subramaniam, Tavintharan, Susekov, Andrey V., Tilney, Myra, Tomlinson, Brian, Truong, Thanh-Huong, Tselepis, Alexandros D., Tybjærg-Hansen, Anne, Vázquez, Alejandra C., Viigimaa, Margus, Vohnout, Branislav, Wang, Luya, Yamashita, Shizuya, Arca, Marcello, Averna, Maurizio, Schreier, Laura, Pang, Jing, Ebenbichler, Christoph, Dieplinger, Hans, Innerhofer, Reinhold, Winhofer-Stöckl, Yvonne, Greber-Platzer, Susanne, Krychtiuk, Konstantin, Speidl, Walter, Toplak, Hermann, Widhalm, Kurt, Stulnig, Thomas, Huber, Kurt, Höllerl, Florian, Rega-Kaun, Gersina, Kleemann, Lucas, Mäser, Martin, Scholl-Bürgi, Sabine, Säly, Christoph, Mayer, Florian J., Sperone, Alexandra, Tanghe, Chloé, Gérard, Anne-Catherine, Pojskic, Lamija, Sisic, Ibrahim, Durak Nalbantic, Azra, Ejubovic, Malik, Jannes, Cinthia E., Pereira, Alexandre C., Krieger, Jose E., Petrov, Ivo, Goudev, Assen, Nikolov, Fedya, Tisheva, Snejana, Yotov, Yoto, Tzvetkov, Ivajlo, Baass, Alexis, Bergeron, Jean, Bernard, Sophie, Brisson, Diane, Cermakova, Lubomira, Couture, Patrick, Francis, Gordon A., Gaudet, Daniel, Hegele, Robert A., Khoury, Etienne, Mancini, G.B. John, McCrindle, Brian W., Paquette, Martine, Ruel, Isabelle, Iatan, Iulia, Cuevas, Ada, Wang, Xumin, Meng, Kang, Song, Xiantao, Yong, Qiang, Jiang, Tao, Liu, Ziyou, Duan, Yanyu, Hong, Jing, Ye, Pucong, Chen, Yan, Qi, Jianguang, Liu, Zesen, Li, Yuntao, Zhang, Chaoyi, Peng, Jie, Yang, Ya, Yu, Wei, Wang, Qian, Yuan, Hui, Cheng, Shitong, Jiang, Long, Chong, Mei, Jiao, Jian, Wu, Yue, Wen, Wenhui, Xu, Liyuan, Zhang, Ruiying, Qu, Yichen, He, Jianxun, Fan, Xuesong, Wang, Zhenjia, Chow, Elaine, Pećin, Ivan, Perica, Dražen, Symeonides, Phivos, Vrablik, Michal, Ceska, Richard, Soska, Vladimir, Tichy, Lukas, Adamkova, Vera, Franekova, Jana, Cifkova, Renata, Kraml, Pavel, Vonaskova, Katerina, Cepova, Jana, Dusejovska, Magdalena, Pavlickova, Lenka, Blaha, Vladimir, Rosolova, Hana, Nussbaumerova, Barbora, Cibulka, Roman, Vaverkova, Helena, Cibickova, Lubica, Krejsova, Zdenka, Rehouskova, Katerina, Malina, Pavel, Budikova, Milena, Palanova, Vaclava, Solcova, Lucie, Lubasova, Alena, Podzimkova, Helena, Bujdak, Juraj, Vesely, Jiri, Jordanova, Marta, Salek, Tomas, Urbanek, Robin, Zemek, Stanislav, Lacko, Jan, Halamkova, Hana, Machacova, Sona, Mala, Sarka, Cubova, Eva, Valoskova, Katerina, Burda, Lukas, Benn, Marianne, Bendary, Ahmed, Daoud, Ihab, Emil, Sameh, Elbahry, Atef, Rafla, Samir, Sanad, Osama, Kazamel, Ghada, Ashraf, Dr Mohamed, Sobhy, Mohamed, El-Hadidy, Amro, Shafy, Mohamed Abdoul, Kamal, Saif, Bendary, Mohamed, Talviste, Grete, Christmann, Jutta, Dressel, Alexander, Fath, Felix, Ferraro, Chiara, Frenzke, Lydia, Gopon, Alica, Klein, Isabel, Pienkowska, Dominika, Sietmann, Tobias, Sonntag, Antonia, Adjan, Omar, Bahrmann, Philipp, Baessler, Andrea, Barkowski, Rasmus, Beckerdjian, Raffi, Berr, Christina, Birkenfeld, Andreas, Böll, Gereon, Carstensen, Avisha, Demuth, Ilya, Finkernagel, Holger, Gouni-Berthold, Ioanna, Hahmann, Harry, Hamerle, Michael, Halder, Julian, Heide, Maria, Julius, Ulrich, Kassner, Ursula, Katzmann, Julius L, Kirschbaum, Anja, Klose, Gerald, Könemann, Stephanie, König, Christel, König, Wolfgang, Krämer, Bernhard, Kuprat, Gerrit, Koschker, Ann-Cathrin, Kilic, Özlem, Lindenmeier, Gerd, Van de Loo, Iris, Lorenz, Babette, Lorenz, Elke, Löhr, Birgit, McChord, Johanna, Maslarska, Mariya, Methe, Heiko, Merkel, Martin, Moussaoui, Zineb, Müller-Kozarez, Irina, Olivier, Christoph B, Ong, Peter, Otte, Britta, Parhofer, Klaus, Partsch, Carl-Joachim, Paulus, Michael, Pehlivanli, Sinan, Pflederer, Tobias, Pusl, Thomas, Richter, Veronika, Rosner, Stefanie, Sanin, Veronika, Schäfer, Sebastian, Schäfer, Christoph, Schatz, Ulrike, Schirmer, Stephan, Schmidt, Christine, Seeger, Wolfgang, Sisovic, Snezna, Spens, Antje, Jablonski, Ksenija Stach, Stadelmann, Alexander, Steinhagen-Thiessen, Elisabeth, Stürzebecher, Paulina, Tafelmeier, Maria, Tillack, Dörthe, Tselmin, Sergey, Tünnemann-Tarr, Adrienn, Vogt, Anja, Beckerath, Jens von, Wilke, Andreas, Wolf, Ulrich, Zemmrich, Claudia, Rizos, Christos V., Skoumas, Ioannis, Tziomalos, Konstantinos, Rallidis, Loukianos, Kotsis, Vasileios, Doumas, Michalis, Athyros, Vasileios, Skalidis, Emmanouil, Kolovou, Genovefa, Kolovou, Vana, Garoufi, Anastasia, Bilianou, Eleni, Koutagiar, Iosif, Kiouri, Estela, Antza, Christina, Zacharis, Evangelos, Attilakos, Achilleas, Sfikas, George, Koumaras, Charalambos, Anagnostis, Panagiotis, Anastasiou, Georgia, Liamis, George, Koutsogianni, Amalia-Despoina, Petkou, Ermioni, Milionis, Haralambos, Koulouri, Anastasia, Prodromiadou, Elisavet, Karányi, Zsolt, Harangi, Mariann, Bajnok, László, Audikovszky, Mária, Márk, László, Benczúr, Béla, Reiber, István, Nagy, Gergely, Nagy, András, Reddy, Lakshmi Lavanya, Shah, Swarup A. V, Ponde, Chandrashekhar K., Dalal, Jamshed J., Sawhney, Jitendra P.S., Verma, Ishwar C., Altaey, Mays, Al-Jumaily, Khalid, Rasul, Dilshad, Abdalsahib, Ali Fawzi, Jabbar, Amer Abdl, Al-ageedi, Mohanad, Dhamin, Mohammed, AlFil, Sarmad, Khadhim, Foad, Miahy, Sabah, Agar, Ruth, Catapano, Alberico Luigi, Calandra, Sebastiano, Tarugi, Patrizia, Casula, Manuela, Galimberti, Federica, Olmastroni, Elena, Sarzani, Riccardo, Ferri, Claudio, Repetti, Elena, Piro, Salvatore, Suppressa, Patrizia, Meregalli, Giancarla, Borghi, Claudio, Muntoni, Sandro, Calabrò, Paolo, Cipollone, Francesco, Purrello, Francesco, Pujia, Arturo, Passaro, Angelina, Marcucci, Rossella, Pecchioli, Valerio, Pisciotta, Livia, Mandraffino, Giuseppe, Pellegatta, Fabio, Mombelli, Giuliana, Branchi, Adriana, Fiorenza, Anna Maria, Pederiva, Cristina, Werba, Josè Pablo, Parati, Gianfranco, Carubbi, Francesca, Iughetti, Lorenzo, Fortunato, Giuliana, Iannuzzi, Arcangelo, Iannuzzo, Gabriella, Cefalù, Angelo Baldassare, Biasucci, Giacomo, Zambon, Sabina, Pirro, Matteo, Sbrana, Francesco, Trenti, Chiara, D'Erasmo, Laura, Federici, Massimo, Ben, Maria Del, Bartuli, Andrea, Giaccari, Andrea, Pipolo, Antonio, Citroni, Nadia, Guardamagna, Ornella, Lia, Salvatore, Benso, Andrea, Biolo, Gianni, Maroni, Lorenzo, Lupi, Alessandro, Bonanni, Luca, Rinaldi, Elisabetta, Zenti, Maria Grazia, Matsuki, Kota, Hori, Mika, Ogura, Masatsune, Masuda, Daisaku, Kobayashi, Takuya, Nagahama, Kumiko, Al-Jarallah, Mohammed, Radovic, Mirjana, Lunegova, Olga, Bektasheva, Erkayim, Abilova, Saamay, Erglis, Andrejs, Gilis, Dainus, Nesterovics, Georgijs, Saripo, Vita, Meiere, Ruta, Skudrina, Gunda, Terauda, Elizabete, Jambart, Selim, Ayoub, Carine, Ghaleb, Youmna, Aliosaitiene, Urte, Kutkiene, Sandra, Abdul Kadir, Siti Hamimah Sheikh, Kasim, Noor Alicezah Mohd, Nor, Noor Shafina Mohd, Abdul Hamid, Hasidah, Abdul Razak, Suraya, Al-Khateeb, Alyaa, Abd Muid, Suhaila, Abdul Rahman, Thuhairah, Kasim, Sazzli Shahlan, Radzi, Ahmad Bakhtiar Md, Ibrahim, Khairul Shafiq, Rosli, Marshima Mohd, Razali, Rafezah, Chua, Yung An, Razman, Aimi Zafira, Nazli, Sukma Azureen, Aziz, Nazirul, Rosman, Azhari, Abdul Murad, NorAzian, Jalaludin, Mohd Amin, Abdul Latif, Ahmad Zubaidi, Azzopardi, C., Mehta, Roopa, Martagon, Alexandro J., Ramirez, Gabriela A. Galan, Villa, Neftali E Antonio, Vazquez, Arsenio Vargas, Elias-Lopez, Daniel, Retana, Gustavo Gonzalez, Rodriguez, Betsabel, Macías, Jose J. Ceballos, Zazueta, Alejandro Romero, Alvarado, Rocio Martinez, Portano, Julieta D. Morales, Lopez, Humberto Alvares, Sauque-Reyna, Leobardo, Herrera, Laura G. Gomez, Mendia, Luis E. Simental, Aguilar, Humberto Garcia, Cooremans, Elizabeth Ramirez, Aparicio, Berenice Peña, Zubieta, Victoria Mendoza, Gonzalez, Perla A. Carrillo, Ferreira-Hermosillo, Aldo, Portilla, Nacu Caracas, Dominguez, Guadalupe Jimenez, Garcia, Alinna Y. Ruiz, Cazares, Hector E. Arriaga, Gonzalez, Jesus R., Valencia, Carla V. Mendez, Padilla, Francisco G., Prado, Ramon Madriz, Ibarra, Manuel O. De los Rios, Villicaña, Ruy D. Arjona, Rivera, Karina J. Acevedo, Carrera, Ricardo Allende, Alvarez, Jose A., Martinez, Jose C. Amezcua, Bustillo, Manuel de los Reyes Barrera, Vargas, Gonzalo Carazo, Chacon, Roberto Contreras, Andrade, Mario H. Figueroa, Ortega, Ashanty Flores, Alcala, Hector Garcia, de Leon, Laura E. Garcia, Guzman, Berenice Garcia, Garcia, Jose J. Garduño, Cuellar, Juan C. Garnica, Cruz, Jose R. Gomez, Garcia, Anell Hernandez, Almada, Jesus R. Holguin, Herrera, Ursulo Juarez, Sobrevilla, Fabiola Lugo, Rodriguez, Eduardo Marquez, Sibaja, Cristina Martinez, Rodriguez, Alma B. Medrano, Oyervides, Jose C. Morales, Vazquez, Daniel I. Perez, Rodriguez, Eduardo A. Reyes, Osorio, Ma. Ludivina Robles, Saucedo, Juan Rosas, Tamayo, Margarita Torres, Talavera, Luis A. Valdez, Arroyo, Luis E. Vera, Carrillo, Eloy A. Zepeda, Stroes, Erik S, Defesche, J, Zuurbier, L, Reeskamp, L, Ibrahim, S, Roeters van Lennep, Jeanine, Wiegman, Albert, Isara, Alphonsus, Obaseki, Darlington E., Al-Waili, Khalid, Al-Zadjali, Fahad, Al-Zakwani, Ibrahim, Al-Kindi, Mohammed, Al-Mukhaini, Suad, Al-Barwani, Hamida, Rana, Asim, Shah, Lahore Saeed Ullah, Al-Nouri, Fahad, Starostecka, Ewa, Konopka, Agnieszka, Bielecka-Dabrowa, Agata, Lewek, Joanna, Sosnowska, Bozena, Gąsior, Mariusz, Dyrbuś, Krzysztof, Jóźwiak, Jacek, Pajkowski, Marcin, Romanowska-Kocejko, Marzena, Żarczyńska-Buchowiecka, Marta, Chmara, Magdalena, Wasąg, Bartosz, Stróżyk, Aneta, Michalska-Grzonkowska, Aleksandra, Medeiros, Ana Margarida, Alves, Ana Catarina, Silva, Francisco, Lobarinhas, Goreti, Palma, Isabel, de Moura, Jose Pereira, Rico, Miguel Toscano, Rato, Quitéria, Pais, Patrícia, Correia, Susana, Moldovan, Oana, Virtuoso, Maria João, Araujo, Francisco, Salgado, Jose Miguel, Colaço, Ines, Dumitrescu, Andreea, Lengher, Calin, Mosteoru, Svetlana, Meshkov, Alexey, Ershova, Alexandra, Rozhkova, Tatiana, Korneva, Victoria, Yu, Kuznetsova T., Zafiraki, Vitaliy, Voevoda, Mikhail, Gurevich, Victor, Duplyakov, Dmitry, Ragino, Yulia, Chubykina, Uliana, Shaposhnik, Igor, Alkaf, Fahmi, Khudari, Alia, Rwaili, Nawal, Al-Allaf, Faisal, Alghamdi, Mohammad, Batais, Mohammed A, Almigbal, Turky H, Kinsara, Abdulhalim, AlQudaimi, Ashraf Hammouda Ahmed, Awan, Zuhier, Elamin, Omer A, Altaradi, Hani, Popovic, Ljiljana, Singh, Sandra, Rasulic, Iva, Petakov, Ana, Lalic, Nebojsa M., Lam, Carolyn, Le, Tan Ju, Siang, Eric Lim Tien, Dissanayake, Sanjaya, I-Shing, Justin Tang, Shyong, Tai E, Jin, Terrance Chua Siang, Ting, Sharon Pek Li, Ming, Jeremy Hoe Kian, Drum, Chester Lee, Nastar, Fathima Ashna, Jia, Loh Wann, Ya, Natalie Koh Si, Jie, Marvin Chua Wei, Dalan, Rinkoo, Wei, Yong Quek, sian, Tiong Yee, Keong, Yeo Khung, Rong, Siau Kai, Jin, Darren Seah Ee, Ming, Ian Koh Jan, Chang, Tan Hong, Peng, Fabian Yap Kok, Vasanwala, Rashida Farhad, Raslova, Katarina, Balinth, Karin, Buganova, Ingrid, Fabryova, Lubomira, Kadurova, Michaela, Klabnik, Alexander, Kozárová, Miriam, Sirotiakova, Jana, Battelino, Tadej, Cevc, Matija, Debeljak, Marusa, Torkar, Ana Drole, Fras, Zlatko, Jug, Borut, Cugalj, Barbara Kern, Kovac, Jernej, Mlinaric, Matej, Sikonja, Jaka, Pilcher, Gillian Joan, Blom, D J, Wolmarans, K H, Brice, B C, Muñiz-Grijalvo, Ovidio, Díaz-Díaz, Jose Luis, de Isla, Leopoldo Pérez, Fuentes, Francisco, Badimon, Lina, Martin, François, Miserez, Eleonore B., Shipton, Janine L., Ganokroj, Poranee, Chattranukulchai, Pairoj, Jiamjarasrungsi, Wiroj, Thongtang, Nuntakorn, Krittayaphong, Rungroj, Vathesatogkit, Prin, Sriphrapradang, Chutintorn, Phimphilai, Mattabhorn, Leelawattana, Rattana, Anthanont, Pimjai, Suraamornkul, Swangjit, Deerochanawong, Chaicharn, Senthong, Vichai, Torpongpun, Artit, Suteerayongprasert, Panuwat, Pengpong, Nawarat, Sathavarodom, Nattapol, Sunanta, Usanee, Porntharukchareon, Thachanun, Kiatpanabhikul, Phatharaporn, Kaewkrasaesin, Chatchon, Kongkit, Jaruwan, Umphonsathien, Mongkontida, Akbulut, Mehmet, Alici, Gökhan, Bayram, Fahri, Can, Levent Hürkan, Celik, Ahmet, Ceyhan, Ceyhun, Coskun, Fatma Yilmaz, Demir, Mesut, Demircan, Sabri, Dogan, Volkan, Durakoglugil, Emre, Dural, İbrahim Etem, Gedikli, Omer, Hacioglu, Aysa, Ildizli, Muge, Kilic, Salih, Kirilmaz, Bahadir, Kutlu, Merih, Oguz, Aytekin, Ozdogan, Oner, Onrat, Ersel, Ozer, Savas, Sabuncu, Tevfik, Sahin, Tayfun, Sivri, Fatih, Sonmez, Alper, Temizhan, Ahmet, Topcu, Selim, Tokgozoglu, Lale, Tuncez, Abdullah, Vural, Mirac, Yenercag, Mustafa, Yesilbursa, Dilek, Yigit, Zerrin, Yildirim, Aytul Belgi, Yildirir, Aylin, Yilmaz, Mehmet Birhan, Atallah, Bassam, Traina, Mahmoud, Sabbour, Hani, Abdul Hay, Dana, Luqman, Neama, Elfatih, Abubaker, Abdulrasheed, Arshad, Manla, Yosef, Kwok, See, DellOca, Nicolas, Alieva, Rano B., Fozilov, Khurshid G., Hoshimov, Shavkat U., Nizamov, Ulugbek I., Kan, Liliya E., Kim, Andrey R., Abdullaeva, Guzal J., Abdullaev, Alisher A., Do, Doan Loi, Nguyen, Mai Ngoc Thi, Kim, Ngoc Thanh, Le, Thanh Tung, Le, Hong An, and Ray, Kausik K.
- Published
- 2024
- Full Text
- View/download PDF
11. Temporal Trends in Takotsubo Syndrome: Results From the International Takotsubo Registry
- Author
-
Schweiger, Victor, Cammann, Victoria L., Crisci, Giulia, Gilhofer, Thomas, Schlenker, Rabea, Niederseer, David, Chen, Shaojie, Ebrahimi, Ramin, Wenzl, Florian, Würdinger, Michael, Citro, Rodolfo, Vecchione, Carmine, Gili, Sebastiano, Neuhaus, Michael, Franke, Jennifer, Meder, Benjamin, Jaguszewski, Miłosz, Noutsias, Michel, Knorr, Maike, Jansen, Thomas, D’Ascenzo, Fabrizio, Dichtl, Wolfgang, von Lewinski, Dirk, Burgdorf, Christof, Kherad, Behrouz, Tschöpe, Carsten, Sarcon, Annahita, Shinbane, Jerold, Rajan, Lawrence, Michels, Guido, Pfister, Roman, Cuneo, Alessandro, Jacobshagen, Claudius, Karakas, Mahir, Koenig, Wolfgang, Pott, Alexander, Meyer, Philippe, Roffi, Marco, Banning, Adrian, Wolfrum, Mathias, Cuculi, Florim, Kobza, Richard, Fischer, Thomas A., Vasankari, Tuija, Airaksinen, K.E. Juhani, Napp, L. Christian, Dworakowski, Rafal, MacCarthy, Philip, Kaiser, Christoph, Osswald, Stefan, Galiuto, Leonarda, Chan, Christina, Bridgman, Paul, Beug, Daniel, Delmas, Clément, Lairez, Olivier, Gilyarova, Ekaterina, Shilova, Alexandra, Gilyarov, Mikhail, El-Battrawy, Ibrahim, Akin, Ibrahim, Poledniková, Karolina, Toušek, Petr, Winchester, David E., Massoomi, Michael, Galuszka, Jan, Ukena, Christian, Poglajen, Gregor, Carrilho-Ferreira, Pedro, Hauck, Christian, Paolini, Carla, Bilato, Claudio, Kobayashi, Yoshio, Kato, Ken, Ishibashi, Iwao, Himi, Toshiharu, Din, Jehangir, Al-Shammari, Ali, Prasad, Abhiram, Rihal, Charanjit S., Liu, Kan, Schulze, P. Christian, Bianco, Matteo, Jörg, Lucas, Rickli, Hans, Pestana, Gonçalo, Nguyen, Thanh H., Böhm, Michael, Maier, Lars S., Pinto, Fausto J., Widimský, Petr, Felix, Stephan B., Braun-Dullaeus, Ruediger C., Rottbauer, Wolfgang, Hasenfuß, Gerd, Pieske, Burkert M., Schunkert, Heribert, Budnik, Monika, Opolski, Grzegorz, Thiele, Holger, Bauersachs, Johann, Horowitz, John D., Di Mario, Carlo, Kong, William, Dalakoti, Mayank, Imori, Yoichi, Münzel, Thomas, Liberale, Luca, Montecucco, Fabrizio, Bax, Jeroen J., Crea, Filippo, Ruschitzka, Frank, Lüscher, Thomas F., Ghadri, Jelena R., Bossone, Eduardo, Templin, Christian, and Di Vece, Davide
- Published
- 2024
- Full Text
- View/download PDF
12. The free energy of a box-version of the interacting Bose gas
- Author
-
Collin, Orphée, Jahnel, Benedikt, and König, Wolfgang
- Subjects
Mathematics - Probability ,60F10, 60J65, 82B10, 81S40 - Abstract
The interacting quantum Bose gas is a random ensemble of many Brownian bridges (cycles) of various lengths with interactions between any pair of legs of the cycles. It is one of the standard mathematical models in which a proof for the famous Bose-Einstein condensation phase transition is sought for. We introduce a simplified version of the model with an organisation of the particles in deterministic boxes instead of Brownian cycles as the marks of a reference Poisson point process (for simplicity, in $\mathbb Z^d$ instead of $\mathbb R^d$). We derive an explicit and interpretable variational formula in the thermodynamic limit for the limiting free energy of the canonical ensemble for any value of the particle density. This formula features all relevant physical quantities of the model, like the microscopic and the macroscopic particle densities, together with their mutual and self-energies and their entropies. The proof method comprises a two-step large-deviation approach for marked Poisson point processes and an explicit distinction into small and large marks. In the characteristic formula, each of the microscopic particles and the statistics of the macroscopic part of the configuration are seen explicitly; the latter receives the interpretation of the condensate. The formula enables us to prove a number of properties of the limiting free energy as a function of the particle density, like differentiability and explicit upper and lower bounds, and a qualitative picture below and above the critical threshold (if it is finite). This proves a modified saturation nature of the phase transition. However, we have not yet succeeded in proving the existence of this phase transition., Comment: 61 pages, 7 figures
- Published
- 2022
13. A large-deviations principle for all the components in a sparse inhomogeneous random graph
- Author
-
Andreis, Luisa, König, Wolfgang, Langhammer, Heide, and Patterson, Robert I. A.
- Subjects
Mathematics - Probability - Abstract
We study an inhomogeneous sparse random graph on [N] = {1, . . . , N } as introduced in a seminal paper by Bollobas, Janson and Riordan (2007): vertices have a type (here in a compact metric space S), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N to infinity, we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size proportional to N). In doing so, we derive explicit logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of the graph. In particular, we recover the criterion for the existence of the phase transition given in [5].
- Published
- 2021
- Full Text
- View/download PDF
14. A large-deviations principle for all the components in a sparse inhomogeneous random graph
- Author
-
Andreis, Luisa, König, Wolfgang, Langhammer, Heide, and Patterson, Robert I. A.
- Published
- 2023
- Full Text
- View/download PDF
15. Effects of statin therapy on diagnoses of new-onset diabetes and worsening glycaemia in large-scale randomised blinded statin trials: an individual participant data meta-analysis
- Author
-
Reith, Christina, Preiss, David, Blackwell, Lisa, Emberson, Jonathan, Spata, Enti, Davies, Kelly, Halls, Heather, Harper, Charlie, Holland, Lisa, Wilson, Kate, Roddick, Alistair J, Cannon, Christopher P, Clarke, Robert, Colhoun, Helen M, Durrington, Paul N, Goto, Shinya, Hitman, Graham A, Hovingh, G Kees, Jukema, J Wouter, Koenig, Wolfgang, Marschner, Ian, Mihaylova, Borislava, Newman, Connie, Probsfield, Jeffrey L, Ridker, Paul M, Sabatine, Marc S, Sattar, Naveed, Schwartz, Gregory G, Tavazzi, Luigi, Tonkin, Andrew, Trompet, Stella, White, Harvey, Yusuf, Salim, Armitage, Jane, Keech, Anthony, Simes, John, Collins, Rory, Baigent, Colin, Barnes, Elizabeth, Fulcher, Jordan, Herrington, William G, Kirby, Adrienne, O'Connell, Rachel, Amarenco, Pierre, Arashi, Hiroyuki, Barter, Philip, Betteridge, D John, Blazing, Michael, Blauw, Gerard J, Bosch, Jackie, Bowman, Louise, Braunwald, Eugene, Bulbulia, Richard, Byington, Robert, Clearfield, Michael, Cobbe, Stuart, Dahlöf, Björn, Davis, Barry, de Lemos, James, Downs, John R, Fellström, Bengt, Flather, Marcus, Ford, Ian, Franzosi, Maria Grazia, Fuller, John, Furberg, Curt, Glynn, Robert, Goldbourt, Uri, Gordon, David, Gotto, Jr, Antonio, Grimm, Richard, Gupta, Ajay, Hawkins, C Morton, Haynes, Richard, Holdaas, Hallvard, Hopewell, Jemma, Jardine, Alan, Kastelein, John JP, Kean, Sharon, Kearney, Patricia, Kitas, George, Kjekshus, John, Knatterud, Genell, Knopp, Robert H, Koren, Michael, Krane, Vera, Landray, Martin, LaRosa, John, Latini, Roberto, Lonn, Eva, Lucci, Donata, MacFadyen, Jean, Macfarlane, Peter, MacMahon, Stephen, Maggioni, Aldo, Marchioli, Roberto, Moyé, Lemuel, Murphy, Sabina, Neil, Andrew, Nicolis, Enrico B, Packard, Chris, Parish, Sarah, Pedersen, Terje R, Peto, Richard, Pfeffer, Marc, Poulter, Neil, Pressel, Sara, Probstfield, Jeffrey, Rahman, Mahboob, Robertson, Michele, Sacks, Frank, Schmieder, Roland, Serruys, Patrick, Sever, Peter, Shaw, John, Shepherd, James, Simpson, Lara, Sleight, Peter, Smeeth, Liam, Tobert, Jonathan, Tognoni, Gianni, Varigos, John, Wanner, Christoph, Wedel, Hans, Weis, Stephen, Welch, K Michael, Wikstrand, John, Wilhelmsen, Lars, Wiviott, Stephen, Yamaguchi, Junichi, Young, Robin, and Zannad, Faiez
- Published
- 2024
- Full Text
- View/download PDF
16. A multitrait genetic study of hemostatic factors and hemorrhagic transformation after stroke treatment
- Author
-
Dehghan, Abbas, Heath, Adam S., Morrison, Alanna C., Reiner, Alex P., Johnson, Andrew, Richmond, Anne, Peters, Annette, van Hylckama Vlieg, Astrid, McKnight, Barbara, Psaty, Bruce M., Hayward, Caroline, Ward-Caviness, Cavin, O’Donnell, Christopher, Chasman, Daniel, Strachan, David P., Tregouet, David A., Mook-Kanamori, Dennis, Gill, Dipender, Thibord, Florian, Asselbergs, Folkert W., Leebeek, Frank W.G., Rosendaal, Frits R., Davies, Gail, Homuth, Georg, Temprano, Gerard, Campbell, Harry, Taylor, Herman A., Bressler, Jan, Huffman, Jennifer E., Rotter, Jerome I., Yao, Jie, Wilson, James F., Bis, Joshua C., Hahn, Julie M., Desch, Karl C., Wiggins, Kerri L., Díez-Ahijado, Laia, Raffield, Laura M., Bielak, Lawrence F., Yanek, Lisa R., Kleber, Marcus E., Sabater-Lleal, Maria, Mueller, Martina, Kavousi, Maryam, Mangino, Massimo, Conomos, Matthew P., Liu, Melissa, Brown, Michael R., Jhun, Min-A, Chen, Ming-Huei, de Maat, Moniek P.M., Pankratz, Nathan, Smith, Nicholas L., Peyser, Patricia A., Elliot, Paul, de Vries, Paul S., Wei, Peng, Wild, Philipp S., Morange, Pierre E., van der Harst, Pim, Yang, Qiong, Marioni, Riccardo, Li, Ruifang, Damrauer, Scott M., Cox, Simon R., Trompet, Stella, Felix, Stephan B., Völker, Uwe, Tang, Weihong, Koenig, Wolfgang, Jukema, J. Wouter, Guo, Xiuqing, Gallego-Fabrega, Cristina, Temprano-Sagrera, Gerard, Cárcel-Márquez, Jara, Muiño, Elena, Cullell, Natalia, Lledós, Miquel, Llucià-Carol, Laia, Martin-Campos, Jesús M., Sobrino, Tomás, Castillo, José, Millán, Mònica, Muñoz-Narbona, Lucía, López-Cancio, Elena, Ribó, Marc, Alvarez-Sabin, Jose, Jiménez-Conde, Jordi, Roquer, Jaume, Tur, Silvia, Obach, Victor, Arenillas, Juan F., Segura, Tomas, Serrano-Heras, Gemma, Marti-Fabregas, Joan, Freijo-Guerrero, Marimar, Moniche, Francisco, Castellanos, Maria del Mar, and Fernández-Cadenas, Israel
- Published
- 2024
- Full Text
- View/download PDF
17. PCSK9 inhibition with orally administered NNC0385-0434 in hypercholesterolaemia: a randomised, double-blind, placebo-controlled and active-controlled phase 2 trial
- Author
-
Koren, Michael J, Descamps, Olivier, Hata, Yoshiki, Hengeveld, Ellen Margo, Hovingh, G Kees, Ikonomidis, Ignatios, Radu Juul Jensen, Maria D, Langbakke, Irene Hedelund, Martens, Fabrice M A C, Søndergaard, Anette Luther, Witkowski, Adam, and Koenig, Wolfgang
- Published
- 2024
- Full Text
- View/download PDF
18. Die Brauchwasserversorgung aus den westdeutschen Schifffahrtskanälen
- Author
-
Teichgräber, Burkhard, Wette, Michael, Geretshauser, Guido, König, Wolfgang, Porth, Markus, editor, Schüttrumpf, Holger, editor, and Ostermann, Ulrich, editor
- Published
- 2023
- Full Text
- View/download PDF
19. William Siemens: An Engineer and Industrialist in Germany and England
- Author
-
König, Wolfgang, Glückler, Johannes, Series Editor, Winch, Christopher, editor, and Punstein, Anna Mateja, editor
- Published
- 2023
- Full Text
- View/download PDF
20. Long-term exposure to ambient air pollution and inflammatory response in the KORA study
- Author
-
Vogli, Megi, Peters, Annette, Wolf, Kathrin, Thorand, Barbara, Herder, Christian, Koenig, Wolfgang, Cyrys, Josef, Maestri, Elena, Marmiroli, Nelson, Karrasch, Stefan, Zhang, Siqi, and Pickford, Regina
- Published
- 2024
- Full Text
- View/download PDF
21. Population-based reference values for kidney function and kidney function decline in 25- to 95-year-old Germans without and with diabetes
- Author
-
Herold, Janina M., Wiegrebe, Simon, Nano, Jana, Jung, Bettina, Gorski, Mathias, Thorand, Barbara, Koenig, Wolfgang, Zeller, Tanja, Zimmermann, Martina E., Burkhardt, Ralph, Banas, Bernhard, Küchenhoff, Helmut, Stark, Klaus J., Peters, Annette, Böger, Carsten A., and Heid, Iris M.
- Published
- 2024
- Full Text
- View/download PDF
22. Distribution of cracks in a chain of atoms at low temperature
- Author
-
Jansen, Sabine, König, Wolfgang, Schmidt, Bernd, and Theil, Florian
- Subjects
Mathematical Physics ,Mathematics - Analysis of PDEs ,Mathematics - Probability ,82B21, 74B20, 74G65, 60F10 - Abstract
We consider a one-dimensional classical many-body system with interaction potential of Lennard-Jones type in the thermodynamic limit at low temperature $1/\beta\in(0,\infty)$. The ground state is a periodic lattice. We show that when the density is strictly smaller than the density of the ground state lattice, the system with $N$ particles fills space by alternating approximately crystalline domains (clusters) with empty domains (voids) due to cracked bonds. The number of domains is of the order of $N\exp(- \beta e_\mathrm{surf}/2)$ with $e_\mathrm{surf}>0$ a surface energy. For the proof, the system is mapped to an effective model, which is a low-density lattice gas of defects. The results require conditions on the interactions between defects. We succeed in verifying these conditions for next-nearest neighbor interactions, applying recently derived uniform estimates of correlations., Comment: 31 pages
- Published
- 2020
- Full Text
- View/download PDF
23. Branching random walks in random environment: a survey
- Author
-
König, Wolfgang
- Subjects
Mathematics - Probability ,60J80, 60J55, 60F10, 60K37 - Abstract
We consider branching particle processes on discrete structures like the hypercube in a random fitness landscape (i.e., random branching/killing rates). The main question is about the location where the main part of the population sits at a late time, if the state space is large. For answering this, we take the expectation with respect to the migration (mutation) and the branching/killing (selection) mechanisms, for fixed rates. This is intimately connected with the parabolic Anderson model, the heat equation with random potential, a model that is of interest in mathematical physics because of the observed prominent effect of intermittency (local concentration of the mass of the solution in small islands). We present several advances in the investigation of this effect, also related to questions inspired from biology., Comment: This text will appear as a chapter in the proceedings volume of the DFG Priority Programme 1590 {\em Probabilistic Structures in Evolution}
- Published
- 2020
24. Longtime asymptotics of the two-dimensional parabolic Anderson model with white-noise potential
- Author
-
König, Wolfgang, Perkowski, Nicolas, and van Zuijlen, Willem
- Subjects
Mathematics - Probability - Abstract
We consider the parabolic Anderson model (PAM) $\partial_t u = \frac12 \Delta u + \xi u$ in $\mathbb R^2$ with a Gaussian (space) white-noise potential $\xi$. We prove that the almost-sure large-time asymptotic behaviour of the total mass at time $t$, written $U(t)$, is given by $\log U(t)\sim \chi t \log t$ for $t \to \infty$, with the deterministic constant $\chi$ identified in terms of a variational formula. In earlier work of one of the authors this constant was used to describe the asymptotic behaviour $\boldsymbol \lambda_1(Q_t)\sim\chi\log t$ of the principal eigenvalue $\boldsymbol\lambda_1(Q_t)$ of the Anderson operator with Dirichlet boundary conditions on the box $Q_t= [-\frac{t}{2},\frac{t}{2}]^2$.
- Published
- 2020
25. The parabolic Anderson model on a Galton-Watson tree
- Author
-
Hollander, Frank den, König, Wolfgang, and Santos, Renato S. dos
- Subjects
Mathematics - Probability ,60H25, 82B44, 05C80 - Abstract
We study the long-time asymptotics of the total mass of the solution to the parabolic Anderson model (PAM) on a supercritical Galton-Watson random tree with bounded degrees. We identify the second-order contribution to this asymptotics in terms of a variational formula that gives information about the local structure of the region where the solution is concentrated. The analysis behind this formula suggests that, under mild conditions on the model parameters, concentration takes place on a tree with minimal degree. Our approach can be applied to finite locally tree-like random graphs, in a coupled limit where both time and graph size tend to infinity. As an example, we consider the configuration model or, more precisely, the uniform simple random graph with a prescribed degree sequence., Comment: 32 pages
- Published
- 2020
26. Inclisiran in patients with prior myocardial infarction: A post hoc pooled analysis of the ORION-10 and ORION-11 Phase 3 randomised trials
- Author
-
Landmesser, Ulf, Koenig, Wolfgang, Leiter, Lawrence A., Raal, Frederick J., Ray, Kausik K., Wright, R. Scott, Han, Jackie, Conde, Lorena Garcia, and Schwartz, Gregory G.
- Published
- 2023
- Full Text
- View/download PDF
27. The German CaRe high registry for familial hypercholesterolemia – Sex differences, treatment strategies, and target value attainment
- Author
-
März, Winfried, Schmidt, Nina, an Haack, Ira, Dressel, Alexander, Grammer, Tanja B., Kleber, Marcus E., Baessler, Andrea, Beil, F. Ulrich, Gouni-Berthold, Ioanna, Julius, Ulrich, Kassner, Ursula, Katzmann, Julius L., Klose, Gerald, König, Christel, Koenig, Wolfgang, Koschker, Ann-Cathrin, Laufs, Ulrich, Merkel, Martin, Otte, Britta, Parhofer, Klaus G., Hengstenberg, Wibke, Schunkert, Heribert, Stach-Jablonski, Ksenija, Steinhagen-Thiessen, Elisabeth, Olivier, Christoph B., Hahmann, Harry, Krzossok, Stefan, Vogt, Anja, Müller-Wieland, Dirk, and Schatz, Ulrike
- Published
- 2023
- Full Text
- View/download PDF
28. Cutting tool condition monitoring using eigenfaces: Tool wear monitoring in milling
- Author
-
König, Wolfgang and Möhring, Hans-Christian
- Published
- 2022
- Full Text
- View/download PDF
29. Surface energy and boundary layers for a chain of atoms at low temperature
- Author
-
Jansen, Sabine, König, Wolfgang, Schmidt, Bernd, and Theil, Florian
- Subjects
Mathematics - Probability ,Mathematical Physics ,Mathematics - Analysis of PDEs ,82B21, 74B20, 74G65, 60F10 - Abstract
We analyze the surface energy and boundary layers for a chain of atoms at low temperature for an interaction potential of Lennard-Jones type. The pressure (stress) is assumed small but positive and bounded away from zero, while the temperature $\beta^{-1}$ goes to zero. Our main results are: (1) As $\beta \to \infty$ at fixed positive pressure $p>0$, the Gibbs measures $\mu_\beta$ and $\nu_\beta$ for infinite chains and semi-infinite chains satisfy path large deviations principles. The rate functions are bulk and surface energy functionals $\overline{\mathcal{E}}_{\mathrm{bulk}}$ and $\overline{\mathcal{E}}_\mathrm{surf}$. The minimizer of the surface functional corresponds to zero temperature boundary layers. (2) The surface correction to the Gibbs free energy converges to the zero temperature surface energy, characterized with the help of the minimum of $\overline{\mathcal{E}}_\mathrm{surf}$. (3) The bulk Gibbs measure and Gibbs free energy can be approximated by their Gaussian counterparts. (4) Bounds on the decay of correlations are provided, some of them uniform in $\beta$.
- Published
- 2019
- Full Text
- View/download PDF
30. A large-deviations principle for all the cluster sizes of a sparse Erd\H{o}s-R\'enyi graph
- Author
-
Andreis, Luisa, König, Wolfgang, and Patterson, Robert I. A.
- Subjects
Mathematics - Probability - Abstract
Let $\mathcal{G}(N,\frac 1Nt_N)$ be the Erd\H{o}s-R\'enyi graph with connection probability $\frac 1Nt_N\sim t/N$ as $N\to\infty$ for a fixed $t\in(0,\infty)$. We derive a large-deviations principle for the empirical measure of the sizes of all the connected components of $\mathcal{G}(N,\frac 1Nt_N)$, registered according to microscopic sizes (i.e., of finite order), macroscopic ones (i.e., of order $N$), and mesoscopic ones (everything in between). The rate function explicitly describes the microscopic and macroscopic components and the fraction of vertices in components of mesoscopic sizes. Moreover, it clearly captures the well known phase transition at $t=1$ as part of a comprehensive picture. The proofs rely on elementary combinatorics and on known estimates and asymptotics for the probability that subgraphs are connected. We also draw conclusions for the strongly related model of the multiplicative coalescent, the Marcus--Lushnikov coagulation model with monodisperse initial condition, and its gelation phase transition.
- Published
- 2019
- Full Text
- View/download PDF
31. Kohle, Eisen, Dampfmaschine. Die Geburt des fossil getriebenen Wirtschaftens
- Author
-
König, Wolfgang, primary
- Published
- 2023
- Full Text
- View/download PDF
32. How to Ensure Collective Action in Multinational Projects: Insights from the EurHisFirm Project
- Author
-
Koenig, Wolfgang, Frank, Muriel, Braswell, Jefferson, Ranft, Lukas, Karapanagiotis, Pantelis, Dibbern, Jens, editor, Förderer, Jens, editor, Kude, Thomas, editor, Rothlauf, Franz, editor, and Spohrer, Kai, editor
- Published
- 2022
- Full Text
- View/download PDF
33. Routeing properties in a Gibbsian model for highly dense multihop networks
- Author
-
König, Wolfgang and Tóbiás, András
- Subjects
Mathematics - Optimization and Control ,60G55, 60K30, 65K10, 82B21, 90B15, 90B18, 91A06 - Abstract
We investigate a probabilistic model for routeing in a multihop ad-hoc communication network, where each user sends a message to the base station. Messages travel in hops via other users, used as relays. Their trajectories are chosen at random according to a Gibbs distribution, which favours trajectories with low interference, measured in terms of signal-to-interference ratio. This model was introduced in our earlier paper [KT18], where we expressed, in the limit of a high density of users, the typical distribution of the family of trajectories in terms of a law of large numbers. In the present work, we derive its qualitative properties. We analytically identify the emerging typical scenarios in three extreme regimes. We analyse the typical number of hops and the typical length of a hop, and the deviation of the trajectory from the straight line, (1) in the limit of a large communication area and large distances, and (2) in the limit of a strong interference weight. In both regimes, the typical trajectory approaches a straight line quickly, in regime (1) with equal hop lengths. Interestingly, in regime (1), the typical length of a hop diverges logarithmically in the distance of the transmitter to the base station. We further analyse (3) local and global repulsive effects of a densely populated subarea on the trajectories., Comment: 36 pages, 5 figures
- Published
- 2017
34. Der Satz von Cramér
- Author
-
König, Wolfgang, Brokate, Martin, Series Editor, Heinze, Aiso, Series Editor, Kang, Mihyun, Series Editor, Kersting, Götz, Series Editor, Kerz, Moritz, Series Editor, Scherzer, Otmar, Series Editor, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
35. Ausgewählte Anwendungen
- Author
-
König, Wolfgang, Brokate, Martin, Series Editor, Heinze, Aiso, Series Editor, Kang, Mihyun, Series Editor, Kersting, Götz, Series Editor, Kerz, Moritz, Series Editor, Scherzer, Otmar, Series Editor, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
36. Grundlegende Techniken
- Author
-
König, Wolfgang, Brokate, Martin, Series Editor, Heinze, Aiso, Series Editor, Kang, Mihyun, Series Editor, Kersting, Götz, Series Editor, Kerz, Moritz, Series Editor, Scherzer, Otmar, Series Editor, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
37. Prinzipien Großer Abweichungen
- Author
-
König, Wolfgang, Brokate, Martin, Series Editor, Heinze, Aiso, Series Editor, Kang, Mihyun, Series Editor, Kersting, Götz, Series Editor, Kerz, Moritz, Series Editor, Scherzer, Otmar, Series Editor, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
38. Large Systems: Convergence of Point Processes
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
39. Events of Bad Quality of Service: Large Deviations
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
40. Random Malware Propagation: Interacting Markov Processes
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
41. Interference: Signal-to-Interference Ratios
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
42. Device Locations: Point Processes
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
43. Random Environments: Cox Point Processes
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
44. Introduction
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
45. Coverage and Connectivity: Boolean Models
- Author
-
Jahnel, Benedikt, König, Wolfgang, Jahnel, Benedikt, and König, Wolfgang
- Published
- 2020
- Full Text
- View/download PDF
46. Effect of statin therapy on muscle symptoms: an individual participant data meta-analysis of large-scale, randomised, double-blind trials
- Author
-
Reith, Christina, Baigent, Colin, Blackwell, Lisa, Emberson, Jonathan, Spata, Enti, Davies, Kelly, Halls, Heather, Holland, Lisa, Wilson, Kate, Armitage, Jane, Harper, Charlie, Preiss, David, Roddick, Alistair, Keech, Anthony, Simes, John, Collins, Rory, Barnes, Elizabeth, Fulcher, Jordan, Herrington, William G, Kirby, Adrienne, Mihaylova, Borislava, O'Connell, Rachel, Amarenco, Pierre, Barter, Philip, Betteridge (deceased), D John, Blazing, Michael, Bosch, Jackie, Bowman, Louise, Braunwald, Eugene, Cannon, Christopher P, Clearfield, Michael, Cobbe, Stuart, Colhoun, Helen M, Dahlöf, Björn, Davis, Barry, de Lemos, James, Downs, John R, Durrington, Paul N, Fellström, Bengt, Ford, Ian, Franzosi, Maria Grazia, Fuller (deceased), John, Furberg, Curt, Glynn, Robert, Gordon, David, Gotto Jr, Antonio, Grimm, Richard, Gupta, Ajay, Hawkins, C Morton, Hitman, Graham A, Holdaas (deceased), Hallvard, Jardine, Alan, Jukema, J Wouter, Kastelein, John JP, Kean, Sharon, Kjekshus, John, Knatterud (deceased), Genell, Knopp (deceased), Robert H, Koenig, Wolfgang, Koren, Michael, Krane, Vera, Landray, Martin, LaRosa, John, Latini, Roberto, Lonn, Eva, Lucci, Donata, MacFadyen, Jean, Macfarlane, Peter, MacMahon, Stephen, Maggioni, Aldo, Marchioli, Roberto, Marschner, Ian, Moyé, Lemuel, Murphy, Sabina, Neil, Andrew, Nicolis, Enrico B, Packard, Chris, Parish, Sarah, Pedersen, Terje R, Peto, Richard, Pfeffer, Marc, Poulter, Neil, Pressel, Sara, Probstfield, Jeffrey, Rahman, Mahboob, Ridker, Paul M, Robertson, Michele, Sacks, Frank, Sattar, Naveed, Schmieder, Roland, Serruys, Patrick W, Sever, Peter, Shaw (deceased), John, Shepherd (deceased), James, Simpson, Lara, Sleight (deceased), Peter, Tavazzi, Luigi, Tognoni, Gianni, Tonkin, Andrew, Trompet, Stella, Wanner, Christoph, Wedel, Hans, Weis, Stephen, Welch, K Michael, White, Harvey, Wikstrand, John, Wilhelmsen, Lars, Wiviott, Stephen, Young, Robin, Yusuf, Salim, Zannad, Faiez, Arashi, Hiroyuki, Byington, Robert, Clarke, Robert, Flather, Marcus, Goldbourt, Uri, Goto, Shinya, Hopewell, Jemma, Hovingh, Kees, Kearney, Patricia, Kitas, George, Newman, Connie, Sabatine, Marc S, Schwartz, Greg, Smeeth, Liam, Tobert, Jonathan, Varigos, John, and Yamaguchi, Junichi
- Published
- 2022
- Full Text
- View/download PDF
47. Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
- Author
-
Gorski, Mathias, Rasheed, Humaira, Teumer, Alexander, Thomas, Laurent F., Graham, Sarah E., Sveinbjornsson, Gardar, Winkler, Thomas W., Günther, Felix, Stark, Klaus J., Chai, Jin-Fang, Tayo, Bamidele O., Wuttke, Matthias, Li, Yong, Tin, Adrienne, Ahluwalia, Tarunveer S., Ärnlöv, Johan, Åsvold, Bjørn Olav, Bakker, Stephan J.L., Banas, Bernhard, Bansal, Nisha, Biggs, Mary L., Biino, Ginevra, Böhnke, Michael, Boerwinkle, Eric, Bottinger, Erwin P., Brenner, Hermann, Brumpton, Ben, Carroll, Robert J., Chaker, Layal, Chalmers, John, Chee, Miao-Li, Chee, Miao-Ling, Cheng, Ching-Yu, Chu, Audrey Y., Ciullo, Marina, Cocca, Massimiliano, Cook, James P., Coresh, Josef, Cusi, Daniele, de Borst, Martin H., Degenhardt, Frauke, Eckardt, Kai-Uwe, Endlich, Karlhans, Evans, Michele K., Feitosa, Mary F., Franke, Andre, Freitag-Wolf, Sandra, Fuchsberger, Christian, Gampawar, Piyush, Gansevoort, Ron T., Ghanbari, Mohsen, Ghasemi, Sahar, Giedraitis, Vilmantas, Gieger, Christian, Gudbjartsson, Daniel F., Hallan, Stein, Hamet, Pavel, Hishida, Asahi, Ho, Kevin, Hofer, Edith, Holleczek, Bernd, Holm, Hilma, Hoppmann, Anselm, Horn, Katrin, Hutri-Kähönen, Nina, Hveem, Kristian, Hwang, Shih-Jen, Ikram, M. Arfan, Josyula, Navya Shilpa, Jung, Bettina, Kähönen, Mika, Karabegović, Irma, Khor, Chiea-Chuen, Koenig, Wolfgang, Kramer, Holly, Krämer, Bernhard K., Kühnel, Brigitte, Kuusisto, Johanna, Laakso, Markku, Lange, Leslie A., Lehtimäki, Terho, Li, Man, Lieb, Wolfgang, Lind, Lars, Lindgren, Cecilia M., Loos, Ruth J.F., Lukas, Mary Ann, Lyytikäinen, Leo-Pekka, Mahajan, Anubha, Matias-Garcia, Pamela R., Meisinger, Christa, Meitinger, Thomas, Melander, Olle, Milaneschi, Yuri, Mishra, Pashupati P., Mononen, Nina, Morris, Andrew P., Mychaleckyj, Josyf C., Nadkarni, Girish N., Naito, Mariko, Nakatochi, Masahiro, Nalls, Mike A., Nauck, Matthias, Nikus, Kjell, Ning, Boting, Nolte, Ilja M., Nutile, Teresa, O’Donoghue, Michelle L., O'Connell, Jeffrey, Olafsson, Isleifur, Orho-Melander, Marju, Parsa, Afshin, Pendergrass, Sarah A., Penninx, Brenda W.J.H., Pirastu, Mario, Preuss, Michael H., Psaty, Bruce M., Raffield, Laura M., Raitakari, Olli T., Rheinberger, Myriam, Rice, Kenneth M., Rizzi, Federica, Rosenkranz, Alexander R., Rossing, Peter, Rotter, Jerome I., Ruggiero, Daniela, Ryan, Kathleen A., Sabanayagam, Charumathi, Salvi, Erika, Schmidt, Helena, Schmidt, Reinhold, Scholz, Markus, Schöttker, Ben, Schulz, Christina-Alexandra, Sedaghat, Sanaz, Shaffer, Christian M., Sieber, Karsten B., Sim, Xueling, Sims, Mario, Snieder, Harold, Stanzick, Kira J., Thorsteinsdottir, Unnur, Stocker, Hannah, Strauch, Konstantin, Stringham, Heather M., Sulem, Patrick, Szymczak, Silke, Taylor, Kent D., Thio, Chris H.L., Tremblay, Johanne, Vaccargiu, Simona, van der Harst, Pim, van der Most, Peter J., Verweij, Niek, Völker, Uwe, Wakai, Kenji, Waldenberger, Melanie, Wallentin, Lars, Wallner, Stefan, Wang, Judy, Waterworth, Dawn M., White, Harvey D., Willer, Cristen J., Wong, Tien-Yin, Woodward, Mark, Yang, Qiong, Yerges-Armstrong, Laura M., Zimmermann, Martina, Zonderman, Alan B., Bergler, Tobias, Stefansson, Kari, Böger, Carsten A., Pattaro, Cristian, Köttgen, Anna, Kronenberg, Florian, and Heid, Iris M.
- Published
- 2022
- Full Text
- View/download PDF
48. Multi‐phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations
- Author
-
Temprano‐Sagrera, Gerard, Sitlani, Colleen M., Bone, William P., Martin‐Bornez, Miguel, Voight, Benjamin F., Morrison, Alanna C., Damrauer, Scott M., de Vries, Paul S., Smith, Nicholas L., Sabater‐Lleal, Maria, Dehghan, Abbas, Heath, Adam S, Morrison, Alanna C, Reiner, Alex P, Johnson, Andrew, Richmond, Anne, Peters, Annette, van Hylckama Vlieg, Astrid, McKnight, Barbara, Psaty, Bruce M, Hayward, Caroline, Ward‐Caviness, Cavin, O’Donnell, Christopher, Chasman, Daniel, Strachan, David P, Tregouet, David A, Mook‐Kanamori, Dennis, Gill, Dipender, Thibord, Florian, Asselbergs, Folkert W, Leebeek, Frank W.G., Rosendaal, Frits R, Davies, Gail, Homuth, Georg, Temprano, Gerard, Campbell, Harry, Taylor, Herman A, Bressler, Jan, Huffman, Jennifer E, Rotter, Jerome I, Yao, Jie, Wilson, James F, Bis, Joshua C, Hahn, Julie M, Desch, Karl C, Wiggins, Kerri L, Raffield, Laura M, Bielak, Lawrence F, Yanek, Lisa R, Kleber, Marcus E, Mueller, Martina, Kavousi, Maryam, Mangino, Massimo, Liu, Melissa, Brown, Michael R, Conomos, Matthew P, Jhun, Min‐A, Chen, Ming‐Huei, de Maat, Moniek P.M., Pankratz, Nathan, Smith, Nicholas L, Peyser, Patricia A, Elliot, Paul, de Vries, Paul S, Wei, Peng, Wild, Philipp S, Morange, Pierre E, van der Harst, Pim, Yang, Qiong, Le, Ngoc‐Quynh, Marioni, Riccardo, Li, Ruifang, Damrauer, Scott M, Cox, Simon R, Trompet, Stella, Felix, Stephan B, Völker, Uwe, Tang, Weihong, Koenig, Wolfgang, Jukema, J. Wouter, Guo, Xiuqing, Lindstrom, Sara, Wang, Lu, Smith, Erin N, Gordon, William, de Andrade, Mariza, Brody, Jennifer A, Pattee, Jack W, Haessler, Jeffrey, Brumpton, Ben M, Chasman, Daniel I, Suchon, Pierre, Turman, Constance, Germain, Marine, MacDonald, James, Braekkan, Sigrid K, Armasu, Sebastian M, Jackson, Rabecca D, Nielsen, Jonas B, Giulianini, Franco, Puurunen, Marja K, Ibrahim, Manal, Heckbert, Susan R, Bammler, Theo K, Frazer, Kelly A, McCauley, Bryan M, Taylor, Kent, Pankow, James S, Reiner, Alexander P, Gabrielsen, Maiken E, Deleuze, Jean‐François, O’Donnell, Chris J, Kim, Jihye, Kraft, Peter, Hansen, John‐Bjarne, Heit, John A, Kooperberg, Charles, Hveem, Kristian, Ridker, Paul M, Morange, Pierre‐Emmanuel, Johnson, Andrew D, Kabrhel, Christopher, Trégouët, David‐Alexandre, Malik, Rainer, Chauhan, Ganesh, Traylor, Matthew, Sargurupremraj, Muralidharan, Okada, Yukinori, Mishra, Aniket, Rutten‐Jacobs, Loes, Giese, Anne‐Katrin, van der Laan, Sander W, Gretarsdottir, Solveig, Anderson, Christopher D, Chong, Michael, Adams, Hieab HH, Ago, Tetsuro, Almgren, Peter, Amouyel, Philippe, Ay, Hakan, Bartz, Traci M, Benavente, Oscar R, Bevan, Steve, Boncoraglio, Giorgio B, Brown, Robert D, Butterworth, Adam S, Carrera, Caty, Carty, Cara L, Chen, Wei‐Min, Cole, John W, Correa, Adolfo, Cotlarciuc, Ioana, Cruchaga, Carlos, Danesh, John, de Bakker, Paul IW, DeStefano, Anita L, den Hoed, Marcel, Duan, Qing, Engelter, Stefan T, Falcone, Guido J, Gottesman, Rebecca F, Grewal, Raji P, Gudnason, Vilmundur, Gustafsson, Stefan, Harris, Tamara B, Hassan, Ahamad, Havulinna, Aki S, Holliday, Elizabeth G, Howard, George, Hsu, Fang‐Chi, Hyacinth, Hyacinth I, Arfan Ikram, M, Ingelsson, Erik, Irvin, Marguerite R, Jian, Xueqiu, Jiménez‐Conde, Jordi, Johnson, Julie A, Jukema, J Wouter, Kanai, Masahiro, Keene, Keith L, Kissela, Brett M, Kleindorfer, Dawn O, Kubo, Michiaki, Lange, Leslie A, Langefeld, Carl D, Langenberg, Claudia, Launer, Lenore J, Lee, Jin‐Moo, Lemmens, Robin, Leys, Didier, Lewis, Cathryn M, Lin, Wei‐Yu, Lindgren, Arne G, Lorentzen, Erik, Magnusson, Patrik K, Maguire, Jane, Manichaikul, Ani, McArdle, Patrick F, Meschia, James F, Mitchell, Braxton D, Mosley, Thomas H, Nalls, Michael A, Ninomiya, Toshiharu, O’Donnell, Martin J, Pulit, Sara L, Rannikmäe, Kristiina, Rexrode, Kathryn M, Rice, Kenneth, Rich, Stephen S, Rost, Natalia S, Rothwell, Peter M, Rundek, Tatjana, Sacco, Ralph L, Sakaue, Saori, Sale, Michele M, Salomaa, Veikko, Sapkota, Bishwa R, Schmidt, Reinhold, Schmidt, Carsten O, Schminke, Ulf, Sharma, Pankaj, Slowik, Agnieszka, Sudlow, Cathie LM, Tanislav, Christian, Tatlisumak, Turgut, Taylor, Kent D, Thijs, Vincent NS, Thorleifsson, Gudmar, Thorsteinsdottir, Unnur, Tiedt, Steffen, Tzourio, Christophe, van Duijn, Cornelia M, Walters, Matthew, Wareham, Nicholas J, Wassertheil‐Smoller, Sylvia, Wilson, James G, Yusuf, Salim, Amin, Najaf, Aparicio, Hugo S, Arnett, Donna K, Attia, John, Beiser, Alexa S, Berr, Claudine, Buring, Julie E, Bustamante, Mariana, Caso, Valeria, Cheng, Yu‐Ching, Hoan Choi, Seung, Chowhan, Ayesha, Cullell, Natalia, Dartigues, Jean‐François, Delavaran, Hossein, Delgado, Pilar, Dörr, Marcus, Engström, Gunnar, Ford, Ian, Gurpreet, Wander S, Hamsten, Anders, Heitsch, Laura, Hozawa, Atsushi, Ibanez, Laura, Ilinca, Andreea, Ingelsson, Martin, Iwasaki, Motoki, Jackson, Rebecca D, Jood, Katarina, Jousilahti, Pekka, Kaffashian, Sara, Kalra, Lalit, Kamouchi, Masahiro, Kitazono, Takanari, Kjartansson, Olafur, Kloss, Manja, Koudstaal, Peter J, Krupinski, Jerzy, Labovitz, Daniel L, Laurie, Cathy C, Levi, Christopher R, Li, Linxin, Lind, Lars, Lindgren, Cecilia M, Lioutas, Vasileios, Mei Liu, Yong, Lopez, Oscar L, Makoto, Hirata, Martinez‐Majander, Nicolas, Matsuda, Koichi, Minegishi, Naoko, Montaner, Joan, Morris, Andrew P, Muiño, Elena, Müller‐Nurasyid, Martina, Norrving, Bo, Ogishima, Soichi, Parati, Eugenio A, Reddy Peddareddygari, Leema, Pedersen, Nancy L, Pera, Joanna, Perola, Markus, Pezzini, Alessandro, Pileggi, Silvana, Rabionet, Raquel, Riba‐Llena, Iolanda, Ribasés, Marta, Romero, Jose R, Roquer, Jaume, Rudd, Anthony G, Sarin, Antti‐Pekka, Sarju, Ralhan, Sarnowski, Chloe, Sasaki, Makoto, Satizabal, Claudia L, Satoh, Mamoru, Sattar, Naveed, Sawada, Norie, Sibolt, Gerli, Sigurdsson, Ásgeir, Smith, Albert, Sobue, Kenji, Soriano‐Tárraga, Carolina, Stanne, Tara, Colin Stine, O, Stott, David J, Strauch, Konstantin, Takai, Takako, Tanaka, Hideo, Tanno, Kozo, Teumer, Alexander, Tomppo, Liisa, Torres‐Aguila, Nuria P, Touze, Emmanuel, Tsugane, Shoichiro, Uitterlinden, Andre G, Valdimarsson, Einar M, van der Lee, Sven J, Völzke, Henry, Wakai, Kenji, Weir, David, Williams, Stephen R, Wolfe, Charles DA, Wong, Quenna, Xu, Huichun, Yamaji, Taiki, Sanghera, Dharambir K, Melander, Olle, Jern, Christina, Strbian, Daniel, Fernandez‐Cadenas, Israel, Longstreth, W T, Rolfs, Arndt, Hata, Jun, Woo, Daniel, Rosand, Jonathan, Pare, Guillaume, Hopewell, Jemma C, Saleheen, Danish, Stefansson, Kari, Worrall, Bradford B, Kittner, Steven J, Seshadri, Sudha, Fornage, Myriam, Markus, Hugh S, Howson, Joanna MM, Kamatani, Yoichiro, Debette, Stephanie, and Dichgans, Martin
- Published
- 2022
- Full Text
- View/download PDF
49. Eigenvalue fluctuations for lattice Anderson Hamiltonians: Unbounded potentials
- Author
-
Biskup, Marek, Fukushima, Ryoki, and Koenig, Wolfgang
- Subjects
Mathematics - Probability ,Mathematical Physics ,Mathematics - Statistics Theory ,60H25 (Primary), 82B44, 35P20, 74Q15, 47A75, 47H40 (Secondary) - Abstract
We consider random Schr\"odinger operators with Dirichlet boundary conditions outside lattice approximations of a smooth Euclidean domain and study the behavior of its lowest-lying eigenvalues in the limit when the lattice spacing tends to zero. Under a suitable moment assumption on the random potential and regularity of the spatial dependence of its mean, we prove that the eigenvalues of the random operator converge to those of a deterministic Schr\"odinger operator. Assuming also regularity of the variance, the fluctuation of the random eigenvalues around their mean are shown to obey a multivariate central limit theorem. This extends the authors' recent work where similar conclusions have been obtained for bounded random potentials., Comment: 25 pages
- Published
- 2017
- Full Text
- View/download PDF
50. A Gibbsian model for message routeing in highly dense multihop networks
- Author
-
König, Wolfgang and Tóbiás, András
- Subjects
Mathematics - Probability ,60F10, 60G55, 60K30, 82B21, 90B15 - Abstract
We investigate a probabilistic model for routeing of messages in relay-augmented multihop ad-hoc networks, where each transmitter sends one message to the origin. Given the (random) transmitter locations, we weight the family of random, uniformly distributed message trajectories by an exponential probability weight, favouring trajectories with low interference (measured in terms of signal-to-interference ratio) and trajectory families with little congestion (measured in terms of the number of pairs of hops using the same relay). Under the resulting Gibbs measure, the system targets the best compromise between entropy, interference and congestion for a common welfare, instead of an optimization of the individual trajectories. In the limit of high spatial density of users, we describe the totality of all the message trajectories in terms of empirical measures. Employing large deviations arguments, we derive a characteristic variational formula for the limiting free energy and analyse the minimizer(s) of the formula, which describe the most likely shapes of the trajectory flow. The empirical measures of the message trajectories well describe the interference, but not the congestion; the latter requires introducing an additional empirical measure. Our results remain valid under replacing the two penalization terms by more general functionals of these two empirical measures., Comment: 40 pages
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.