158 results on '"Haywood, J. M"'
Search Results
2. Aviation fuel tracer simulation: Model intercomparison and implications
- Author
-
Danilin, M. Y, Fahey, D. W, Schumann, U., Prather, M. J, Penner, J. E, Ko, M. K. W, Weisenstein, D. K, Jackman, C. H, Pitari, G., Kahler, I., Sausen, R., Weaver, C. J, Douglass, A. R, Connell, P. S, Kinnison, D. E, Dentener, F. J, Fleming, E. L, Berntsen, T. K, Isaksen, I. S. A, Haywood, J. M, and Karcher, B.
- Subjects
aircraft ,atmospheric aerosols ,earth atmosphere ,exhaust gases ,gas emissions ,mathematical models ,soot ,troposphere - Abstract
An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key findings are that subsonic aircraft emissions: 1) have not be responsible for the observed water vapor trends at 40°N; 2) could be a significant source of soot mass near 12 km, but not at 20 km, 3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause, and 4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/m² and −0.013 W/m² due to emitted soot and sulfur, respectively.
- Published
- 1998
3. Assessing the impact of self‐lofting on increasing the altitude of black carbon in a global climate model
- Author
-
Johnson, B. T., primary and Haywood, J. M., additional
- Published
- 2023
- Full Text
- View/download PDF
4. General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol
- Author
-
Haywood, J. M., Roberts, D. L., Slingo, A., Edwards, J. M., and Shine, K. P.
- Published
- 1997
5. Bounding Global Aerosol Radiative Forcing of Climate Change
- Author
-
Bellouin, N., primary, Quaas, J., additional, Gryspeerdt, E., additional, Kinne, S., additional, Stier, P., additional, Watson‐Parris, D., additional, Boucher, O., additional, Carslaw, K. S., additional, Christensen, M., additional, Daniau, A.‐L., additional, Dufresne, J.‐L., additional, Feingold, G., additional, Fiedler, S., additional, Forster, P., additional, Gettelman, A., additional, Haywood, J. M., additional, Lohmann, U., additional, Malavelle, F., additional, Mauritsen, T., additional, McCoy, D. T., additional, Myhre, G., additional, Mülmenstädt, J., additional, Neubauer, D., additional, Possner, A., additional, Rugenstein, M., additional, Sato, Y., additional, Schulz, M., additional, Schwartz, S. E., additional, Sourdeval, O., additional, Storelvmo, T., additional, Toll, V., additional, Winker, D., additional, and Stevens, B., additional
- Published
- 2020
- Full Text
- View/download PDF
6. Bounding Global Aerosol Radiative Forcing of Climate Change
- Author
-
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A. -L., Dufresne, J. -L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, Thorsten, McCoy, D. T., Myhre, G., Muelmenstaedt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., Stevens, B., Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A. -L., Dufresne, J. -L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, Thorsten, McCoy, D. T., Myhre, G., Muelmenstaedt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.
- Abstract
Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6Wm(-2), or -2.0 to -0.4Wm(-2) with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Plain Language Summary Human activities emit into the atmosphere small liquid and solid particles called aerosols. Those aerosols change the energy budget of the Earth and trigger climate changes, by scattering and absorbing solar and terrestrial radiation and playing important roles in the forma
- Published
- 2020
- Full Text
- View/download PDF
7. Remote Sensing of Vertical Distributions of Smoke Aerosol Off the Coast of Africa
- Author
-
Kaufman, Y. J, Haywood, J. M, Hobbs, P. V, Hart, W, and Schmid, B
- Subjects
Earth Resources And Remote Sensing - Abstract
In 2004 NASA plans to launch the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations- CALIPSO mission, with a two-wavelength lidar aboard. CALIPSO will fly in formation with the Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Aqua satellite. Here we present inversions of combined aircraft lidar and MODIS data to study the properties of smoke off the southwest coast of Southern Africa. The inversion derives profiles of the aerosol extinction due to fine and coarse particles. Comparisons with three sets of airborne in situ measurements show excellent agreement of the aerosol extinction profiles; however the inversion derives smaller spectral dependence of the extinction than the in situ measurements. The inversion is sensitive to the aerosol backscattering-to-extinction ratio (BER). Due to nonsphericity of the coarse aerosols, the range of BERs of the smoke aerosol is 0.014 to 0.021 sr(sup -l) for the fine and coarse particles at 0.53 and 1.06 pm wavelengths, which do not differ much from the value for dust (0.016 sr(sup -1)) at these wavelengths.
- Published
- 2003
- Full Text
- View/download PDF
8. Are Changes in Atmospheric Circulation Important for Black Carbon Aerosol Impacts on Clouds, Precipitation, and Radiation?
- Author
-
Johnson, B. T., primary, Haywood, J. M., additional, and Hawcroft, M. K., additional
- Published
- 2019
- Full Text
- View/download PDF
9. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
- Author
-
Boucher, O, Schwartz, S. E, Ackerman, T. P, Anderson, T. L, Bergstrom, B, Bonnel, B, Dahlback, A, Fouquart, Y, Chylek, P, Fu, Q, Halthore, R. N, Haywood, J. M, Iversen, T, Kato, S, Kinne, S, Kirkevag, A, Knapp, K. R, Lacis, A, Laszlo, I, and Mishchenko, M. I
- Subjects
Environment Pollution - Abstract
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
- Published
- 2000
10. BANKRUPTCY AND LIQUIDATION OF COMPANIES IN ENGLAND
- Author
-
PEARLMAN, SIDNEY and HAYWOOD, J. M.
- Published
- 1959
11. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign
- Author
-
Johnson, B. T., primary, Haywood, J. M., additional, Langridge, J. M., additional, Darbyshire, E., additional, Morgan, W. T., additional, Szpek, K., additional, Brooke, J., additional, Marenco, F., additional, Coe, H., additional, Artaxo, P., additional, Longo, K. M., additional, Mulcahy, J., additional, Mann, G., additional, Dalvi, M., additional, and Bellouin, N., additional
- Published
- 2016
- Full Text
- View/download PDF
12. Amazon deforestation fires increase plant productivity through changes in diffuse radiation
- Author
-
Rap, Alexandru, Reddington, C., Spracklen, D., Mercado, L., Haywood, J. M., Bonal, Damien, Butt, N., Phillips, O., University of Leeds, University of Exeter, Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), University of Queensland (UQ), and University of Southern Queensland (USQ)
- Subjects
évolution de la productivité ,Vegetal Biology ,amazonie ,incendie de forêt ,déforestation ,productivité forestière ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,Biologie végétale ,rayonnement diffus - Abstract
Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia.[br/] The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon.[br/] We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity.[br/] We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES model to show that this increase in diffuse radiation is responsible for a substantial growth in gross primary productivity (GPP), enhancing Amazon-wide dry-season GPP by 5% with local increases of up to 15%. Most of this GPP response results in an increase in NPP, estimated in the dry season at 10% across the Amazon with local increases as large as 30%. This substantial NPP enhancement spatially matches observed increases in forest biomass storage across the Amazon.[br/] We thus suggest that deforestation fires have an important impact on the Amazon carbon budget and attempt to estimate the fraction of the observed forest carbon sink that can be attributed to this mechanism. Change [%] in diffuse radiation due to deforestation
- Published
- 2013
13. The Harmattan over West Africa: nocturnal structure and frontogenesis
- Author
-
Burton, R. R., Devine, G. M., Parker, D. J., Chazette, P., Dixon, N., Flamant, Cyrille, Haywood, J. M., School of Earth and Environment [Leeds] (SEE), University of Leeds, University of Reading (UOR), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Chimie Atmosphérique Expérimentale (CAE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,Dust uplift ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,[SDE.MCG]Environmental Sciences/Global Changes ,AMMA ,Harmattan ,Unified Model - Abstract
International audience; This article presents observations and model simulations of the low-level nocturnal structure of the atmosphere over West Africa. The measurements are taken from the dry-season Special Observing Period (SOP-0) of the African Monsoon Multidisciplinary Analysis (AMMA), at Niamey, Niger, on 23 and 24 January 2006. During this time, mesoscale structures in the atmospheric aerosol loadings were observed. The available observations indicate that these mesoscale features at Niamey are consistent with the passage of gravity currents or bores in the northerly Harmattan winds. Model simulations at resolutions down to 1 km indicate that the mesoscale structures are caused by nocturnal frontogenesis in the baroclinic zone to the south of the Sahara in the winter months. This frontogenesis is a continental-scale phenomenon, which has significant implications for the uplift and transport of dust and biomass-burning aerosols in the region. An accompanying frontogenetic feature appears further south in the model simulations, associated with the winter intertropical front. The frontogenesis is possibly linked with the development of structures showing characteristics of canonical mesoscale phenomena, including internal bores and gravity currents. Representation of these features in the UK Met Office Unified Model at different resolutions (from 12 km to 1 km) is discussed.
- Published
- 2013
- Full Text
- View/download PDF
14. Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations
- Author
-
Dacre, Helen F., Grant, Alan L. M., Hogan, Robin J., Belcher, Stephen E., Thomson, D. J., Devenish, B. J., Marenco, F., Hort, M. C., Haywood, J. M., Ansmann, A., Mattis, I., and Clarisse, L.
- Abstract
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (
- Published
- 2011
15. Supplementary material to "Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection"
- Author
-
Jones, A. C., primary, Haywood, J. M., additional, and Jones, A., additional
- Published
- 2015
- Full Text
- View/download PDF
16. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
- Author
-
Jones, A. C., primary, Haywood, J. M., additional, and Jones, A., additional
- Published
- 2015
- Full Text
- View/download PDF
17. Fires increase Amazon forest productivity through increases in diffuse radiation
- Author
-
Rap, A., primary, Spracklen, D. V., additional, Mercado, L., additional, Reddington, C. L., additional, Haywood, J. M., additional, Ellis, R. J., additional, Phillips, O. L., additional, Artaxo, P., additional, Bonal, D., additional, Restrepo Coupe, N., additional, and Butt, N., additional
- Published
- 2015
- Full Text
- View/download PDF
18. Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study
- Author
-
Pacifico, F., primary, Folberth, G. A., additional, Sitch, S., additional, Haywood, J. M., additional, Rizzo, L. V., additional, Malavelle, F. F., additional, and Artaxo, P., additional
- Published
- 2015
- Full Text
- View/download PDF
19. The AMMA field campaigns : multiscale and multidisciplinary observations in the West African region
- Author
-
Lebel, Thierry, Parker, Douglas J., Flamant, Cyrille, Bourlès, Bernard, Marticorena, Beatrice, Mougin, Éric, Peugeot, Christophe, Diedhiou, Arona, Haywood, J. M., Ngamini, Jean-Blaise, Polcher, Jan, Redelsperger, Jean-Luc, Thorncroft, Chris D., Laboratoire d'étude des transferts en hydrologie et environnement (LTHE), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), School of Earth and Environment [Leeds] (SEE), University of Leeds, SPACE - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Océan du Large et Variabilité Climatique (OLVAC), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Met Office Hadley Centre (MOHC), United Kingdom Met Office [Exeter], ASECNA, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Department of Earth and Atmospheric Sciences [Albany], University at Albany [SUNY], State University of New York (SUNY)-State University of New York (SUNY), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Met Office Hadley Centre for Climate Change (MOHC), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Agence pour la sécurité de la navigation aérienne en Afrique et à Madagascar (ASECNA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de Recherche pour le Développement (IRD)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,monitoring ,Monitoring ,Climate ,Environment ,strategy ,environment ,climate - Abstract
AMMA - the African Monsoon Multidisciplinary Analysis - is the biggest programme of research into environment and climate ever attempted in At AMMA has involved a comprehensive field experiment bringing together ocean. land and atmospheric measurements. on time-scales ranging from hourly and daily variability up to the changes in seasonal activity over a number of years. Many of the publications in this special issue make use of subsets of the AMMA measurements. collected from a diverse set of sensors As a general introduction to the special issue, this paper provides a comprehensive overview of the AMMA observational programme. and summarises the scientific strategy which has defined the field deployment The relationship between the existing observational monitoring networks of the region and the new sensors deployed for AMMA. and for the future, is described Making use of regional and sub-regional maps. the main groups of sensors are described in terms of their deployment periods and then spatial co-ordination The key linkages between different groups of measurements are also outlined. in terms of the strategy for their combined use and in terms of their interdependence Some brief summaries of conditions sampled doling the three years of the AM MA Extended Observing Period are also given Copyright (C) 2009 Royal Meteorological Society and Crown Copyright
- Published
- 2010
- Full Text
- View/download PDF
20. Regional variability of the composition of mineral dust from western Africa : results from the AMMA SOP0/DABEX and DODO field campaigns - art. no. D00C13
- Author
-
Formenti, Paola, Rajot, Jean-Louis, Desboeufs, Karine, Caquineau, Sandrine, Chevaillier, Servanne, Nava, S., Gaudichet, Annie, Journet, Emilie, Triquet, Sylvain, Alfaro, Stéphane, Chiari, M., Haywood, J. M., Coe, H., Highwood, E. J., Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Biogéochimie et écologie des milieux continentaux (Bioemco), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Paléo-environnements tropicaux et variabilité climatique (PALEOTROPIQUE), Istituto Nazionale di Fisica Nucleare (INFN), United Kingdom Met Office [Exeter], School of Earth, Atmospheric and Environmental Sciences [Manchester] (SEAES), University of Manchester [Manchester], University of Reading (UOR), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA)-École normale supérieure - Paris (ENS Paris), Institut de Recherche pour le Développement (IRD [France-Nord]), Department of Meteorology, and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU]Sciences of the Universe [physics] ,parasitic diseases ,complex mixtures ,respiratory tract diseases - Abstract
This paper presents data on elemental and mineralogical composition of mineral dust from various source regions of Africa collected during the African Monsoon Multidisciplinary Analyses (AMMA) SOP0/DABEX and Dust Ouflow and Deposition to the Ocean (DODO) DODO1 experiments (January-February 2006), and the DODO2 campaign (August 2006). Bulk filter samples were collected at the AMMA supersite of Banizoumbou, Niger, as well as on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Both mineral dust and biomass burning in external mixing occurred in surface and elevated layers during the winter field phase of the campaign. However, mineral dust was overwhelming, accounting for 72% of the estimated aerosol mass in aged elevated biomass burning layers and up to 93% in plumes of mineral dust, which generally occurred in the boundary layer. A number of well-defined episodes of advection of mineral dust could be identified both at the ground and on the aircraft. The elemental and mineralogical composition varied depending on source region. This variability could be well traced by the calcium content, which is enhanced in dust from North Africa but depleted in dust from the Sahel. Iron oxides in the form of hematite and goethite are enriched in dust emitted within Sahel and in Mauritania, whereas dust from the Bodele depression is iron-oxide depleted. Iron oxides represented between 2.4% and 4.5% of the total estimated dust oxide mass. This regional variability will have to be taken into account in estimating the optical properties of absorption of mineral dust from western Africa.
- Published
- 2008
- Full Text
- View/download PDF
21. Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000
- Author
-
Myhre, G., Stordal, F., Johnsrud, M., Diner, D. J., Geogdzhayev, I. V., Haywood, J. M., Holben, B. N., Thomas Popp, Ignatov, A., Kahn, R. A., Kaufman, Y. J., Loeb, N., Martonchik, J. V., Mishchenko, M. I., Nalli, N. R., Remer, L. A., Schroedter-Homscheidt, M., Tanré, D., Torres, O., Wang, M., Norwegian Institute for Air Research (NILU), Department of Geosciences [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, NASA Goddard Institute for Space Studies (GISS), NASA Goddard Space Flight Center (GSFC), United Kingdom Met Office [Exeter], Biospheric Sciences Branch, Deutsches Fernerkundungsdatenzentrum / German Remote Sensing Data Center (DFD), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), NOAA National Environmental Satellite, Data, and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA), NASA Goddard Laboratory for Atmosphere, Center for Atmospheric Sciences [Hampton] (CAS), Hampton University, Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Joint Center for Earth Systems Technology [Baltimore] (JCET), NASA Goddard Space Flight Center (GSFC)-University of Maryland [Baltimore County] (UMBC), University of Maryland System-University of Maryland System, University of Maryland [Baltimore County] (UMBC), University of Maryland System, and NASA-California Institute of Technology (CALTECH)
- Subjects
010309 optics ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,0103 physical sciences ,satellite aerosol retrieval intercomparison over ocean ,respiratory system ,01 natural sciences ,complex mixtures ,0105 earth and related environmental sciences - Abstract
International audience; Monthly mean aerosol optical depth (AOD) over ocean is compared from a total of 9 aerosol retrievals during a 40 months period. Comparisons of AOD have been made both for the entire period and sub periods. We identify regions where there is large disagreement and good agreement between the aerosol satellite retrievals. Significant differences in AOD have been identified in most of the oceanic regions. Several analyses are performed including spatial correlation between the retrievals as well as comparison with AERONET data. During the 40 months period studied there have been several major aerosol field campaigns as well as events of high aerosol content. It is studied how the aerosol retrievals compare during such circumstances. The differences found in this study are larger than found in a previous study where 5 aerosol retrievals over an 8 months period were compared. Part of the differences can be explained by limitations and deficiencies in some of the aerosol retrievals. In particular, results in coastal regions are promising especially for aerosol retrievals from satellite instruments particularly suited for aerosol research. In depth analyses explaining the differences between AOD obtained in different retrievals are clearly needed. We limit this study to identifying differences and similarities and indicating possible sources that affect the quality of the retrievals. This is a necessary first step towards understanding the differences and improving the retrievals.
- Published
- 2004
22. Biomass burning related ozone damage on vegetation over the Amazon forest
- Author
-
Pacifico, F., primary, Folberth, G. A., additional, Sitch, S., additional, Haywood, J. M., additional, Artaxo, P., additional, and Rizzo, L. V., additional
- Published
- 2014
- Full Text
- View/download PDF
23. Uplift of Saharan dust south of the intertropical discontinuity
- Author
-
Marsham, J. H., Parker, D. J., Grams, C. M., Taylor, C. M., Haywood, J. M., Marsham, J. H., Parker, D. J., Grams, C. M., Taylor, C. M., and Haywood, J. M.
- Abstract
In situ observations from a flight made during the Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave Radiation (GERBILS) field campaign (June 2007) show significant dust uplift into the monsoon flow immediately south of the intertropical discontinuity in the western Sahara. Dust loadings were highest in the moist monsoon air and the observations are consistent with dust uplift by the nocturnal monsoon winds. There is some evidence that cold pools within the monsoon flow contributed to the dust uplift: regions of elevated dust, water vapor, and ozone within the monsoon air are consistent with precipitation cooling and moistening air from upper levels and the resultant dusty cold pools propagating northward. However, only southward propagating cold pool outflows could be observed in satellite imagery. Using European Centre for Medium-Range Weather Forecasts analyses and satellite data, it is shown that the asymmetry in the seasonal dust cycle is closely related to the downdraft convective available potential energy (DCAPE) from convective storms. There is both more dust and more DCAPE during monsoon onset than during retreat. The larger DCAPE values during monsoon onset, as well as the stronger nocturnal monsoon flow and the stronger heat trough circulation, are expected to contribute to the higher dust loadings at this time. Both the monsoon flow and cold pool outflows within it result in dust uplift in the western Sahara during the monsoon onset, which is when the maximum dust uplift occurs. For dust modeling, this shows the importance of accurately modeling not only the monsoon flow itself but also deep convection and cold pools.
- Published
- 2008
24. Spatial distribution of dust's optical properties over the Sahara and Asia inferred from Moderate Resolution Imaging Spectroradiometer
- Author
-
Yoshida, M., primary, Haywood, J. M., additional, Yokohata, T., additional, Murakami, H., additional, and Nakajima, T., additional
- Published
- 2013
- Full Text
- View/download PDF
25. Stratospheric aerosols from the Sarychev volcano eruption in the 2009 Arctic summer
- Author
-
Jégou, F., primary, Berthet, G., additional, Brogniez, C., additional, Renard, J.-B., additional, François, P., additional, Haywood, J. M., additional, Jones, A., additional, Bourgeois, Q., additional, Lurton, T., additional, Auriol, F., additional, Godin-Beekmann, S., additional, Guimbaud, C., additional, Krysztofiak, G., additional, Gaubicher, B., additional, Chartier, M., additional, Clarisse, L., additional, Clerbaux, C., additional, Balois, J. Y., additional, Verwaerde, C., additional, and Daugeron, D., additional
- Published
- 2013
- Full Text
- View/download PDF
26. Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign.
- Author
-
Johnson, B. T., Haywood, J. M., Langridge, J. M., Darbyshire, E., Morgan, W. T., Szpek, K., Brooke, J., Marenco, F., Coe, H., Artaxo, P., Longo, K. M., Mulcahy, J., Mann, G., Dalvi, M., and Bellouin, N.
- Abstract
We present observations of biomass burning aerosol from the South American Biomass Burning Analysis (SAMBBA) and other measurement campaigns, and use these to evaluate the representation of biomass burning aerosol properties and processes in a state-of-the-art climate model. The evaluation includes detailed comparisons with aircraft and ground data, along with remote sensing observations from MODIS and AERONET. We demonstrate several improvements to aerosol properties following the implementation of the GLOMAP-mode modal aerosol scheme in the HadGEM3 climate model. This predicts the particle size distribution, composition and optical properties, giving increased accuracy in the representation of aerosol properties and physical-chemical processes over the CLASSIC bulk aerosol scheme previously used in HadGEM2. Although both models give similar regional distributions of carbonaceous aerosol mass and Aerosol Optical Depth (AOD), GLOMAP-mode is better able to capture the observed size distribution, single scattering albedo, and Ångström exponent across different tropical biomass burning source regions. Both aerosol schemes overestimate the uptake of water compared to recent observations, CLASSIC more so than GLOMAP-mode, leading to a likely overestimation of aerosol scattering, AOD and single scattering albedo at high relative humidity. Observed aerosol vertical distributions were well captured when biomass burning aerosol emissions were injected uniformly from the surface to 3 km. Finally, good agreement between observed and modelled AOD was gained only after scaling up GFED3 emissions by a factor of 1.6 for CLASSIC and 2.0 for GLOMAP-mode. We attribute this difference in scaling factor mainly to different assumptions for the growth of aerosol mass during ageing via oxidation and condensation of organics. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
27. Overview of the South American biomass burning analysis (SAMBBA) field experiment
- Author
-
Morgan, W. T., primary, Allan, J. D., additional, Flynn, M., additional, Darbyshire, E., additional, Hodgson, A., additional, Johnson, B. T., additional, Haywood, J. M., additional, Freitas, S., additional, Longo, K., additional, Artaxo, P., additional, and Coe, H., additional
- Published
- 2013
- Full Text
- View/download PDF
28. Spatial distribution of dust's optical properties over the Sahara and Asia inferred from Moderate Resolution Imaging Spectroradiometer
- Author
-
Yoshida, M., primary, Haywood, J. M., additional, Johnson, B. T., additional, Murakami, H., additional, and Nakajima, T., additional
- Published
- 2012
- Full Text
- View/download PDF
29. Sea-spray geoengineering in the HadGEM2-ES earth-system model: radiative impact and climate response
- Author
-
Jones, A., primary and Haywood, J. M., additional
- Published
- 2012
- Full Text
- View/download PDF
30. The Harmattan over West Africa: nocturnal structure and frontogenesis
- Author
-
Burton, R. R., primary, Devine, G. M., additional, Parker, D. J., additional, Chazette, P., additional, Dixon, N., additional, Flamant, C., additional, and Haywood, J. M., additional
- Published
- 2012
- Full Text
- View/download PDF
31. Airborne measurements of trace gases and aerosols over the London metropolitan region
- Author
-
McMeeking, G. R., primary, Bart, M., additional, Chazette, P., additional, Haywood, J. M., additional, Hopkins, J. R., additional, McQuaid, J. B., additional, Morgan, W. T., additional, Raut, J.-C., additional, Ryder, C. L., additional, Savage, N., additional, Turnbull, K., additional, and Coe, H., additional
- Published
- 2012
- Full Text
- View/download PDF
32. Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallajökull eruption
- Author
-
Webster, H. N., primary, Thomson, D. J., additional, Johnson, B. T., additional, Heard, I. P. C., additional, Turnbull, K., additional, Marenco, F., additional, Kristiansen, N. I., additional, Dorsey, J., additional, Minikin, A., additional, Weinzierl, B., additional, Schumann, U., additional, Sparks, R. S. J., additional, Loughlin, S. C., additional, Hort, M. C., additional, Leadbetter, S. J., additional, Devenish, B. J., additional, Manning, A. J., additional, Witham, C. S., additional, Haywood, J. M., additional, and Golding, B. W., additional
- Published
- 2012
- Full Text
- View/download PDF
33. Airborne measurements of trace gases and aerosols over the London metropolitan region
- Author
-
McMeeking, G. R., primary, Bart, M., additional, Chazette, P., additional, Haywood, J. M., additional, Hopkins, J. R., additional, McQuaid, J. B., additional, Morgan, W. T., additional, Raut, J.-C., additional, Ryder, C. L., additional, Savage, N., additional, Turnbull, K., additional, and Coe, H., additional
- Published
- 2011
- Full Text
- View/download PDF
34. Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations
- Author
-
Dacre, H. F., primary, Grant, A. L. M., additional, Hogan, R. J., additional, Belcher, S. E., additional, Thomson, D. J., additional, Devenish, B. J., additional, Marenco, F., additional, Hort, M. C., additional, Haywood, J. M., additional, Ansmann, A., additional, Mattis, I., additional, and Clarisse, L., additional
- Published
- 2011
- Full Text
- View/download PDF
35. Geostationary Earth Radiation Budget Intercomparison of Longwave and Shortwave radiation (GERBILS)
- Author
-
Haywood, J. M., primary
- Published
- 2011
- Full Text
- View/download PDF
36. Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign
- Author
-
Haywood, J. M., primary, Johnson, B. T., additional, Osborne, S. R., additional, Baran, A. J., additional, Brooks, M., additional, Milton, S. F., additional, Mulcahy, J., additional, Walters, D., additional, Allan, R. P., additional, Klaver, A., additional, Formenti, P., additional, Brindley, H. E., additional, Christopher, S., additional, and Gupta, P., additional
- Published
- 2011
- Full Text
- View/download PDF
37. Short-wave and long-wave radiative properties of Saharan dust aerosol
- Author
-
Osborne, S. R., primary, Baran, A. J., additional, Johnson, B. T., additional, Haywood, J. M., additional, Hesse, E., additional, and Newman, S., additional
- Published
- 2011
- Full Text
- View/download PDF
38. Parameterization of contrails in the UK Met Office Climate Model
- Author
-
Rap, A., primary, Forster, P. M., additional, Jones, A., additional, Boucher, O., additional, Haywood, J. M., additional, Bellouin, N., additional, and De Leon, R. R., additional
- Published
- 2010
- Full Text
- View/download PDF
39. The Atlantic inflow to the Saharan heat low: observations and modelling
- Author
-
Grams, C. M., primary, Jones, S. C., additional, Marsham, J. H., additional, Parker, D. J., additional, Haywood, J. M., additional, and Heuveline, V., additional
- Published
- 2009
- Full Text
- View/download PDF
40. Measurements of aerosol properties from aircraft, satellite and ground-based remote sensing: a case-study from the Dust and Biomass-burning Experiment (DABEX)
- Author
-
Johnson, B. T., primary, Christopher, S., additional, Haywood, J. M., additional, Osborne, S. R., additional, McFarlane, S., additional, Hsu, C., additional, Salustro, C., additional, and Kahn, R., additional
- Published
- 2009
- Full Text
- View/download PDF
41. Overview of the Dust and Biomass‐burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period‐0
- Author
-
Haywood, J. M., primary, Pelon, J., additional, Formenti, P., additional, Bharmal, N., additional, Brooks, M., additional, Capes, G., additional, Chazette, P., additional, Chou, C., additional, Christopher, S., additional, Coe, H., additional, Cuesta, J., additional, Derimian, Y., additional, Desboeufs, K., additional, Greed, G., additional, Harrison, M., additional, Heese, B., additional, Highwood, E. J., additional, Johnson, B., additional, Mallet, M., additional, Marticorena, B., additional, Marsham, J., additional, Milton, S., additional, Myhre, G., additional, Osborne, S. R., additional, Parker, D. J., additional, Rajot, J.‐L., additional, Schulz, M., additional, Slingo, A., additional, Tanré, D., additional, and Tulet, P., additional
- Published
- 2008
- Full Text
- View/download PDF
42. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass‐burning Experiment (DABEX)
- Author
-
Myhre, G., primary, Hoyle, C. R., additional, Berglen, T. F., additional, Johnson, B. T., additional, and Haywood, J. M., additional
- Published
- 2008
- Full Text
- View/download PDF
43. Uplift of Saharan dust south of the intertropical discontinuity
- Author
-
Marsham, J. H., primary, Parker, D. J., additional, Grams, C. M., additional, Taylor, C. M., additional, and Haywood, J. M., additional
- Published
- 2008
- Full Text
- View/download PDF
44. Aircraft measurements of biomass burning aerosol over West Africa during DABEX
- Author
-
Johnson, B. T., primary, Osborne, S. R., additional, Haywood, J. M., additional, and Harrison, M. A. J., additional
- Published
- 2008
- Full Text
- View/download PDF
45. Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment
- Author
-
Osborne, S. R., primary, Johnson, B. T., additional, Haywood, J. M., additional, Baran, A. J., additional, Harrison, M. A. J., additional, and McConnell, C. L., additional
- Published
- 2008
- Full Text
- View/download PDF
46. In situ and remote-sensing measurements of the mean microphysical and optical properties of industrial pollution aerosol during ADRIEX
- Author
-
Osborne, S. R., primary, Haywood, J. M., additional, and Bellouin, N., additional
- Published
- 2007
- Full Text
- View/download PDF
47. A comparison of aerosol optical and chemical properties over the Adriatic and Black Seas during summer 2004: Two case-studies from ADRIEX
- Author
-
Cook, J., primary, Highwood, E. J., additional, Coe, H., additional, Formenti, P., additional, Haywood, J. M., additional, and Crosier, J., additional
- Published
- 2007
- Full Text
- View/download PDF
48. Aerosol Direct Radiative Impact Experiment (ADRIEX) overview
- Author
-
Highwood, E. J., primary, Haywood, J. M., additional, Coe, H., additional, Cook, J., additional, Osborne, S., additional, Williams, P., additional, Crosier, J., additional, Bower, K., additional, Formenti, P., additional, McQuaid, J., additional, Brooks, B., additional, Thomas, G., additional, Grainger, R., additional, Barnaba, F., additional, Gobbi, G. P., additional, de Leeuw, G., additional, and Hopkins, J., additional
- Published
- 2007
- Full Text
- View/download PDF
49. Sensitivity of global sulphate aerosol production to changes in oxidant concentrations and climate
- Author
-
Rae, J. G. L., primary, Johnson, C. E., additional, Bellouin, N., additional, Boucher, O., additional, Haywood, J. M., additional, and Jones, A., additional
- Published
- 2007
- Full Text
- View/download PDF
50. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection.
- Author
-
Jones, A. C., Haywood, J. M., and Jones, A.
- Abstract
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative 5 imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all 3 aerosol-injection scenarios, though there are a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature-response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation pro15 ducing a significant stratospheric warming (> +20 °C). As injection rates for titania are close to those for sulfate, there appears little benefit of using titania when compared to injection of sulfur dioxide, which has the added benefit of being well modelled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.