Balder ten Cate, Michael Benedikt, Pierre Bourhis, Michael Vanden Boom, Gabriele Puppis, Computing Science Laboratory - Oxford University, University of Oxford, Self-adaptation for distributed services and large software systems (SPIRALS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Projet CNRS Momentum, University of Oxford [Oxford], University of California [Santa Cruz] (UCSC), University of California, Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Department of Computer Science [Oxford], Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Logic and Computation (ILLC, FNWI/FGw), and ILLC (FNWI)
We provide a wide-ranging study of the scenario where a subset of the relations in a relational vocabulary is visible to a user—that is, their complete contents are known—while the remaining relations are invisible. We also have a background theory—invariants given by logical sentences—that may relate the visible relations to invisible ones, and also may constrain both the visible and invisible relations in isolation. We want to determine whether some other information, given as a positive existential formula, can be inferred using only the visible information and the background theory. This formula whose inference we are concerned with is denoted as the query . We consider whether positive information about the query can be inferred, and also whether negative information—the sentence does not hold—can be inferred. We further consider both the instance-level version of the problem, where both the query and the visible instance are given, and the schema-level version, where we want to know whether truth or falsity of the query can be inferred in some instance of the schema.