1. Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia.
- Author
-
Chilyabanyama, Obvious Nchimunya, Chilengi, Roma, Simuyandi, Michelo, Chisenga, Caroline C., Chirwa, Masuzyo, Hamusonde, Kalongo, Saroj, Rakesh Kumar, Iqbal, Najeeha Talat, Ngaruye, Innocent, and Bosomprah, Samuel
- Subjects
PREDICTIVE tests ,NUTRITION ,MACHINE learning ,RANDOM forest algorithms ,RISK assessment ,LOGISTIC regression analysis ,GROWTH disorders ,ALGORITHMS ,PROBABILITY theory ,DISEASE risk factors ,CHILDREN - Abstract
Stunting is a global public health issue. We sought to train and evaluate machine learning (ML) classification algorithms on the Zambia Demographic Health Survey (ZDHS) dataset to predict stunting among children under the age of five in Zambia. We applied Logistic regression (LR), Random Forest (RF), SV classification (SVC), XG Boost (XgB) and Naïve Bayes (NB) algorithms to predict the probability of stunting among children under five years of age, on the 2018 ZDHS dataset. We calibrated predicted probabilities and plotted the calibration curves to compare model performance. We computed accuracy, recall, precision and F1 for each machine learning algorithm. About 2327 (34.2%) children were stunted. Thirteen of fifty-eight features were selected for inclusion in the model using random forest. Calibrating the predicted probabilities improved the performance of machine learning algorithms when evaluated using calibration curves. RF was the most accurate algorithm, with an accuracy score of 79% in the testing and 61.6% in the training data while Naïve Bayesian was the worst performing algorithm for predicting stunting among children under five in Zambia using the 2018 ZDHS dataset. ML models aids quick diagnosis of stunting and the timely development of interventions aimed at preventing stunting. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF