1. Extreme genetic diversity among springtails (Collembola) in subterranean calcretes of arid Australia.
- Author
-
Guzik MT, Stevens MI, Cooper SJB, Humphreys WF, and Austin AD
- Subjects
- Animals, Biodiversity, Calcium Carbonate, Electron Transport Complex IV genetics, Genetic Variation, Phylogeny, Phylogeography, Western Australia, Arthropods classification, Arthropods genetics
- Abstract
The subterranean islands hypothesis for calcretes of the Yilgarn region in Western Australia applies to many stygobitic (subterranean-aquatic) species that are "trapped" evolutionarily within isolated aquifers due to their aquatic lifestyles. In contrast, little is known about the distribution of terrestrial-subterranean invertebrates associated with the calcretes. We used subterranean Collembola from the Yilgarn calcretes to test the hypothesis that troglobitic species, those inhabiting the subterranean unsaturated (non-aquatic) zone of calcretes, are also restricted in their distribution and represent reciprocally monophyletic and endemic lineages. We used the barcoding fragment of the mtDNA cytochrome c oxidase subunit 1 ( COI ) gene from 183 individuals to reconstruct the phylogenetic history of the genus Pseudosinella Schäffer (Collembola, Lepidocyrtidae) from 10 calcretes in the Yilgarn. These calcretes represent less than 5% of the total possible calcretes in this region, yet we show that their diversity for subterranean Collembola comprises a minimum of 25 new species. Regionally, multiple levels of diversity exist in Pseudosinella , indicative of a complex evolutionary history for this genus in the Yilgarn. These species have probably been impacted by climatic oscillations, facilitating their dispersal across the landscape. The results represent a small proportion of the undiscovered diversity in Australia's arid zone.
- Published
- 2021
- Full Text
- View/download PDF