1. Assessment of coastal inundation triggered by multiple drivers in Ca Mau Peninsula, Vietnam.
- Author
-
Hung Nghia Nguyen, Quan Quan Le, Dung Viet Nguyen, Tan Hong Cao, Toan Quang To, Hai Do Dac, Wood, Melissa, and Haigh, Ivan D.
- Subjects
STORM surges ,NATURAL disasters ,FLOODS ,EFFECT of human beings on climate change ,FLOOD risk ,RAINFALL - Abstract
The Ca Mau Peninsula plays a critical role in the agricultural and aquacultural productivity of the Vietnam Mekong Delta (VMD), central to regional food security and the population's economic and social welfare. Unfortunately, this region has also historically been a hotspot for natural disasters, particularly from flooding, which is initiated by seasonal river flux upstream and heightened sea levels downstream, but also exacerbated by global climate change (e.g., increased rainfall and sea-level rise, tropical storm surges) and human activities (e.g. river bed lowering, land subsidence). The potential risks associated with rising inundation levels is important information for the future sustainability of the region and its ability to adapt to both current and forthcoming changes. The research around the influence of such drivers on future flood risk, in the Ca Mau Peninsula, is incomplete, primarily due to the absence of a quantitative coastal inundation map corresponding to future compounded scenarios. In this study, we therefore evaluate flooding dynamics in the Ca Mau peninsula using a fully calibrated 1D model, to represent a range of anthropogenic and climate change compound scenarios. Our findings indicate that factors such as increased high-flows upstream, alterations in the riverbed of the main Mekong channel, and occurrences of storm surges effecting the mainstream Mekong River, are unlikely to significantly affect inundation dynamics in this region. However, land subsidence, rising sea levels, and their combined effects emerge as the primary drivers behind the escalation of inundation events in the Ca Mau peninsula, both in terms of their extent and intensity, in the foreseeable future. These results serve as vital groundwork for strategic development and investment as well as for emergency decision-making and flood management planning, providing essential insights for shaping development policies and devising investment strategies related to infrastructure systems in an area which is rapidly developing. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF