1. Modified human respiratory tract model to describe the retention of plutonium in scar tissues.
- Author
-
Poudel D, Avtandilashvili M, Klumpp JA, Bertelli L, and Tolmachev SY
- Subjects
- Animals, Humans, United States, Radiation Dosage, Cicatrix metabolism, Models, Biological, Respiratory System metabolism, Plutonium analysis
- Abstract
The Human Respiratory Tract Model described in Publication 130 of the International Commission on Radiological Protection provides some mechanisms to account for retention of material that can be subject to little to no mechanical transport or absorption into the blood. One of these mechanisms is 'binding', which refers to a process by which a fraction ('bound fraction') of the dissolved material chemically binds to the tissue of the airway wall. The value of the bound fraction can have a significant impact on the radiation doses imparted to different parts of the respiratory tract. To properly evaluate-and quantify-bound fraction for an element, one would need information on long-term retention of the element in individual compartments of the respiratory tract. Such data on regional retention of plutonium in the respiratory tract of four workers-who had inhaled materials with solubility ranging from soluble nitrate to very insoluble high-fired oxides-were obtained at the United States Transuranium and Uranium Registries. An assumption of bound fraction alone was found to be inconsistent with this dataset and also with a review of the literature. Several studies show evidence of retention of a large amount of Pu activity in the scar tissues of humans and experimental animals, and accordingly, a model structure with scar-tissue compartments was proposed. The transfer rates to these compartments were determined using Markov Chain Monte Carlo analysis of the bioassay and post-mortem data, considering the uncertainties associated with deposition, dissolution and particle clearance parameters. The models predicted that a significant amount-between 20 and 100% for the cases analyzed-of plutonium retained in the respiratory tract was sequestered in the scar tissues. Unlike chemically-bound Pu that irradiates sensitive epithelial cells, Pu in scar tissues may not be dosimetrically significant because the scar tissues absorb most, if not all, of the energy from alpha emissions., (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF