Fang Yu, Yi Yan, Mang Shi, Hai-Zhou Liu, Hong-Liang Zhang, Yong-Bo Yang, Xin-Yi Huang, Gauger, Phillip C., Jianqiang Zhang, Yan-He Zhang, Guang-Zhi Tong, Zhi-Jun Tian, Jian-Jun Chen, Xue-Hui Cai, Di Liu, Ganwu Li, and Tong-Qing An
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen that affects the pig industry, is a highly genetically diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus have not been completely elucidated. In this study, comparative analyses of all available genomic sequences of North American (NA)-type PRRSVs (n = 355, including 138 PRRSV genomes sequenced in this study) in China and the United States during 2014–2018 revealed a high frequency of interlineage recombination hot spots in nonstructural protein 9 (NSP9) and the GP2 to GP3 regions. Lineage 1 (L1) PRRSV was found to be susceptible to recombination among PRRSVs both in China and the United States. The recombinant major parent between the 1991–2013 data and the 2014–2018 data showed a trend from complex to simple. The major recombination pattern changed from an L8 to L1 backbone during 2014–2018 for Chinese PRRSVs, whereas L1 was always the major backbone for US PRRSVs. Intralineage recombination hot spots were not as concentrated as interlineage recombination hot spots. In the two main clades with differential diversity in L1, NADC30-like PRRSVs are undergoing a decrease in population genetic diversity, NADC34-like PRRSVs have been relatively stable in population genetic diversity for years. Systematic analyses of insertion and deletion (indel) polymorphisms of NSP2 divided PRRSVs into 25 patterns, which could generate novel references for the classification of PRRSVs. The results of this study contribute to a deeper understanding of the recombination of PRRSVs and indicate the need for coordinated epidemiological investigations among countries. [ABSTRACT FROM AUTHOR]