1. Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.
- Author
-
Gorski M, Jung B, Li Y, Matias-Garcia PR, Wuttke M, Coassin S, Thio CHL, Kleber ME, Winkler TW, Wanner V, Chai JF, Chu AY, Cocca M, Feitosa MF, Ghasemi S, Hoppmann A, Horn K, Li M, Nutile T, Scholz M, Sieber KB, Teumer A, Tin A, Wang J, Tayo BO, Ahluwalia TS, Almgren P, Bakker SJL, Banas B, Bansal N, Biggs ML, Boerwinkle E, Bottinger EP, Brenner H, Carroll RJ, Chalmers J, Chee ML, Chee ML, Cheng CY, Coresh J, de Borst MH, Degenhardt F, Eckardt KU, Endlich K, Franke A, Freitag-Wolf S, Gampawar P, Gansevoort RT, Ghanbari M, Gieger C, Hamet P, Ho K, Hofer E, Holleczek B, Xian Foo VH, Hutri-Kähönen N, Hwang SJ, Ikram MA, Josyula NS, Kähönen M, Khor CC, Koenig W, Kramer H, Krämer BK, Kühnel B, Lange LA, Lehtimäki T, Lieb W, Loos RJF, Lukas MA, Lyytikäinen LP, Meisinger C, Meitinger T, Melander O, Milaneschi Y, Mishra PP, Mononen N, Mychaleckyj JC, Nadkarni GN, Nauck M, Nikus K, Ning B, Nolte IM, O'Donoghue ML, Orho-Melander M, Pendergrass SA, Penninx BWJH, Preuss MH, Psaty BM, Raffield LM, Raitakari OT, Rettig R, Rheinberger M, Rice KM, Rosenkranz AR, Rossing P, Rotter JI, Sabanayagam C, Schmidt H, Schmidt R, Schöttker B, Schulz CA, Sedaghat S, Shaffer CM, Strauch K, Szymczak S, Taylor KD, Tremblay J, Chaker L, van der Harst P, van der Most PJ, Verweij N, Völker U, Waldenberger M, Wallentin L, Waterworth DM, White HD, Wilson JG, Wong TY, Woodward M, Yang Q, Yasuda M, Yerges-Armstrong LM, Zhang Y, Snieder H, Wanner C, Böger CA, Köttgen A, Kronenberg F, Pattaro C, and Heid IM
- Subjects
- AMP-Activated Protein Kinases, Creatinine, Glomerular Filtration Rate genetics, Humans, Protein Disulfide-Isomerases, United Kingdom, Genome-Wide Association Study, Kidney
- Abstract
Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m
2 /year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function., (Copyright © 2020 International Society of Nephrology. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF