1. Internal-Tide Spectroscopy and Prediction in the Timor Sea.
- Author
-
Kelly, Samuel M., Jones, Nicole L., Ivey, Gregory N., and Lowe, Ryan J.
- Subjects
MOORING engineering ,PREDICTION theory ,TIDES ,OCEANOGRAPHY - Abstract
Spectral analyses of two 3.5-yr mooring records from the Timor Sea quantified the coherence of mode-0 (surface) and mode-1 (internal) tides with the astronomical tidal potential. The noncoherent tides had well-defined variance and were most accurately quantified for tidal species (as opposed to constituents) in long records (>6 months). On the continental slope (465 m), the semidiurnal mode-0 and mode-1 velocity and mode-1 pressure variance were 95%, 68%, and 56% coherent, respectively. On the continental shelf (145 m), the semidiurnal mode-0 and mode-1 velocity and mode-1 pressure variance were 98%, 34%, and 42% coherent, respectively. The response method produced time series of the semidiurnal coherent and noncoherent tides. The spectra and decorrelation time scales of the semidiurnal tidal amplitudes were similar to those of the barotropic mean flow and mode-1 eigenspeed (~4 days), suggesting local mesoscale variability shapes noncoherent tidal variability. Over long time scales (>30 days), mode-1 sea surface displacement amplitudes were positively correlated with mode-1 eigenspeed on the shelf. At both moorings, internal tides were likely modulated during both generation and propagation. Self-prediction using the response method enabled about 75% of semidiurnal mode-1 sea surface displacement to be predicted 2.5 days in advance. Improved prediction models will require realistic tide-topography coupling and background variability with both short and long time scales. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF