1. Simultaneous Inversion for Surface Wave Phase Velocity and Earthquake Centroid Parameters: Methodology and Application.
- Author
-
Xiao, Xiao, Sun, Li, Wang, Xiaoxin, and Wen, Lianxing
- Subjects
- *
SURFACE waves (Seismic waves) , *PHASE velocity , *SEISMIC waves , *EARTHQUAKES , *INTERNAL structure of the Earth , *MICROSEISMS - Abstract
Both the regional earthquake surface wave and seismic ambient noise provide important constraints on the Earth's structure, and yet no study satisfactorily combined them for the best imaging of subsurface seismic structure. In this study, we address this issue by developing a new method to simultaneously determine surface wave phase velocity and earthquake centroid parameters in three steps: (a) preliminary phase velocity inversion based on seismic ambient noise, (b) preliminary earthquake relocation based on earthquake surface wave data, and (c) simultaneous inversion for phase velocity and earthquake centroid parameters with constraints of interstation phase velocity measurements based on seismic ambient noise and event‐station phase velocity measurements based on earthquake surface wave data. Application of the method in the North South Seismic Belt region in China results in high‐resolution Rayleigh wave phase velocity maps and accurate earthquake centroid parameters. The additional earthquake data notably improve resolution of the inverted phase velocity model in west Yunnan and central Tibetan blocks, the regions with sparse seismic station coverage. The inverted phase velocity model exhibits high‐velocity anomalies in cratonic regions and the Emeishan Large Igneous Province, and low‐velocity anomalies in the interior and surrounding regions of the Tibetan Plateau. Relocation places earthquakes in shallow depths with geotherm above the crustal rock's brittle‐ductile transition temperature of ∼400℃ $\sim 400\textdegree$, revealing thermal control on thickness of the seismogenic zone. With earthquake centroid parameters constrained, earthquake data are expected to provide further constraints on the deep seismic structure that is beyond the sampling limit of seismic ambient noise. Plain Language Summary: High‐resolution seismic image of the Earth's interior provides significant physical and structural information inside the Earth. Whereas both the regional earthquake data and seismic ambient noise provide constraints on the seismic imaging, no study yet satisfactorily combined these two types of data for the best results. In this paper, we develop a new method to combine both types of seismic data to better image seismic structure and apply the new method in the North South Seismic Belt region in China. The method consists of three steps to simultaneously determine seismic structure and earthquake source parameters. The resultant seismic images exhibit noted improvement in revealing high‐resolution seismic structure in regions with sparse seismic station coverage, such as the Tibetan Plateau and its adjacent regions. The redetermined earthquake depths reveal thermal control on the maximal depth of earthquake occurrence in the region, with earthquakes occurring at the shallow depths colder than rock's brittle‐ductile transition temperature of ∼400℃ $\sim 400\textdegree$. Key Points: A new method is developed to simultaneously determine surface wave phase velocity and earthquake centroid parametersApplication of the method in the North South Seismic Belt region in China yields high resolution phase velocity maps and event parametersAdditional earthquake data significantly improve the resolution and accuracy of surface wave phase velocity model [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF