1. Modelling Heat Balance of a Large Lake in Central Tibetan Plateau Incorporating Satellite Observations.
- Author
-
Guo, Linan, Zheng, Hongxing, Wu, Yanhong, Zhu, Liping, Wang, Junbo, and Ju, Jianting
- Subjects
MODIS (Spectroradiometer) ,WATER temperature ,GLOBAL warming ,STANDARD deviations ,LAKES ,ARTIFICIAL satellites ,THEMATIC mapper satellite - Abstract
The thermodynamics of many lakes around the globe are shifting under a warming climate, affecting nutrients and oxygen transportation within the lake and altering lake biota. However, long-term variation in lake heat and water balance is not well known, particularly for regions like the Tibetan Plateau. This study investigates the long-term (1963–2019) variation in the heat balance of a large lake in the Tibetan Plateau (Nam Co) by combining the strengths of modeling and remote sensing. Remotely sensed lake surface water temperatures from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Along Track Scanning Radiometer Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (ARC-Lake) are used to calibrate and validate a conceptual model (air2water) and a thermodynamic model (LAKE) for the studied lake, for which in situ observation is limited. The results demonstrate that remotely sensed lake surface water temperature can serve as a valuable surrogate for in situ observations, facilitating effective calibration and validation of lake models. Compared with the MODIS-based lake surface water temperature (LSWT) for the period 2000–2019, the correlation coefficient and root mean square error (RMSE) of the LAKE model are 0.8 and 4.2 °C, respectively, while those of the air2water model are 0.9 and 2.66 °C, respectively. Based on modeling, we found that the water temperature of Nam Co increased significantly (p < 0.05) during the period of 1963–2019, corresponding to a warming climate. The rate of water temperature increase is highest at the surface layer (0.41 °C/10a). This warming trend is more noticeable in June and November. From 1963 to 2019, net radiation flux increased at a rate of 0.5 W/m
2 /10a. The increase in net radiation is primarily responsible for the warming of the lake water, while its impact on changes in lake evaporation is comparatively minor. The approaches developed in this study demonstrate the flexibility of incorporating remote sensing observations into modeling. The results on long-term changes in heat balance could be valuable for a systematic understanding of lake warming in response to a changing climate in the Tibetan Plateau. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF