1. The Discovery of Mesoproterozoic Oceanic Crust In North Qaidam UHP Belt, NW China.
- Author
-
CHEN, Danling and REN, Yunfei
- Subjects
PALEOZOIC Era ,METAMORPHIC rocks ,ECLOGITE ,RODINIA (Supercontinent) ,CYANITE ,LAWSONITE - Abstract
The North Qaidam is an Early Paleozoic UHP metamorphic belt located at the north margin of the Tibet plateau. Eclogites in this belt contain both continental‐and oceanic‐type ones. In which, the continental‐type eclogites have protolith ages of 750–850 Ma and WPB or CFB geochemical signatures and are believed to have formed in a continental rift or an incipient oceanic basin setting related to the breakup of the Rodinia supercontinent, their metamorphic ages (421–458 Ma) and P–T paths are comparable to their host gneisses; oceanic‐type eclogites have cumulate gabbro or E‐MORB geochemical signatures, their protolith and metamorphic ages are 510–516 Ma and 425–450 Ma, respectively(Zhang et al., 2008). Therefore, the North Qaidam UHP belt was thought to record the whole Neoprotoerozoic–Paleozoic Wilson cycle (Song et al., 2014). In this study, we reported three new kinds of eclogites: kyanite‐bearing eclogite, lawsonite pseudomorph‐bearing eclogite and double mineral eclogite. They occur as big lentoid blocks in regional granitic gneiss in the western part of the belt. Phase equilibrium modelling and zircon LA‐ICPMS U‐Pb dating show that all these three eclogites experienced a clockwise P–T path with peak metamorphic conditions close to or fall in the coesite stability field, and their peak metamorphic age were around 436‐439 Ma, similar to those continental‐type eclogites in this belt. But their protolith ages are between 1273 and 1070 Ma, and some of them recorded an amphibolite facies metamorphic age of 927 Ma, and geochemical data and zircon Lu‐Hf and O isotope analysis indicate these eclogites have features of present day N‐MORB. Combined with the existing results, we propose that the North Qaidam is a polycyclic composite orogenwhich recorded tectonic evolution of Mesoproterozoic ocean floor spreading, assembly and breakup of Rodinia supercontinent, Early Paleozoic oceanic deep subduction and subsequently continental deep subduction. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF